Original research article
A'Bear DA, Jones TH, Kandeler E, Boddy L. 2014. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70:151-158. https://doi.org/10.1016/j.soilbio.2013.12.017
10.1016/j.soilbio.2013.12.017Ali S, Liu K, Ahmed W, Jing H, Qaswar M, Anthonio CK, Maitlo AA, Lu Z, Liu L, Zhang H. 2021. Nitrogen Mineralization, soil microbial biomass and extracellular enzyme activities regulated by long-term N fertilizer inputs: a comparison study from upland and paddy soils in a red soil region of China. Agronomy 11:2057. https://doi.org/10.3390/agronomy11102057
10.3390/agronomy11102057Allison SD, Treseder KK. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 14:2898-2909. https://doi.org/10.1111/j.1365-2486.2008.01716.x
10.1111/j.1365-2486.2008.01716.xAllison SD, Wallenstein MD, Bradford MA. 2010. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3:336-340. https://doi.org/10.1038/ngeo846
10.1038/ngeo846Asmar F, Eiland F, Nielsen NE. 1994. Effect of extracellular-enzyme activities on solubilization rate of soil organic nitrogen. Biol. Fertil. Soils 17:32-38. https://doi.org/10.1007/BF00418669
10.1007/BF00418669Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. 2001. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 3:139-148. https://doi.org/10.1055/s-2001-12905
10.1055/s-2001-12905Badri DV, Vivanco JM. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666-681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
10.1111/j.1365-3040.2009.01926.xBerry JA, Raison JK. 1981. Responses of Macrophytes to Temperature. In Lange OL et al. (Eds.) Physiological plant ecology I. Encyclopedia of plant physiology, vol. 12. A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68090-8_11
10.1007/978-3-642-68090-8_11Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. 2002. Acid phosphatases. Mol. Pathol. 55:65-72. https://doi.org/10.1136/mp.55.2.65
10.1136/mp.55.2.6511950951PMC1187150Choi WJ, Lee MS, Choi JE, Yoon S, Kim HY. 2013. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine. Glob Change Biol. 19:1300-1310. https://doi.org/10.1111/gcb.12110
10.1111/gcb.1211023504904Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther JG, 2013. Introduction. In Stocker TF et al. (Eds.) Climate Change 2013: The Physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, New York, USA.
Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173. https://doi.org/10.1038/nature04514
10.1038/nature0451416525463Davidson EA, Janssens IA, Luo Y. 2006. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Change Biol. 12:154-164. https://doi.org/10.1111/j.1365-2486.2005.01065.x
10.1111/j.1365-2486.2005.01065.xDeng SP, Tabatabai MA. 1994. Cellulase activity of soils. Soil Biol. Biochem. 26:1347-1354. https://doi.org/10.1016/0038-0717(94)90216-X
10.1016/0038-0717(94)90216-XFischer H, Eckhardt KU, Meyer A, Neumann G, Leinweber P, Fischer K, Kuzyakov Y. 2010. Rhizodeposition of maize-short term carbon budget and composition. J. Plant Nutr. Soil Sci. 173, 67-79. https://doi.org/10.1002/jpln.200800293
10.1002/jpln.200800293García-Ruiz R, Ochoa V, Viñegla B, Hinojosa MB, Peña-Santiago R, Liébanas G, Linares JC, Carreira JA. 2009. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: Influence of seasonality and site features. Appl. Soil Ecol. 41:305-314. https://doi.org/10.1016/j.apsoil.2008.12.004
10.1016/j.apsoil.2008.12.004Ge T, Wei X, Razavi BS, Zhu Z, Hu Y, Kuzyakov Y, Jones DL, Wu J. 2017. Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biol. Biochem. 113:108-115. https://doi.org/10.1016/j.soilbio.2017.06.005
10.1016/j.soilbio.2017.06.005He Y, Xing Y, Yan G, Liu G, Liu T, Wang Q. 2023. Long-term nitrogen addition could modify degradation of soil organic matter through changes in soil enzymatic activity in a natural secondary forest. Forests 14:2049. https://doi.org/10.3390/f14102049
10.3390/f14102049Hinsinger P, Plassard C, Jaillard B. 2006. Rhizosphere: A new frontier for soil biogeochemistry. J. Geochem. Explor. 88:210-213. https://doi.org/10.1016/j.gexplo.2005.08.041
10.1016/j.gexplo.2005.08.041Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y. 2016. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 101:32-43. https://doi.org/10.1016/j.soilbio.2016.07.003
10.1016/j.soilbio.2016.07.003Kim HY, Lim SS, Kwak JH, Lee DS, Lee SM, Ro HM, Choi WJ. 2011. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil 342:59-71. https://doi.org/10.1007/s11104-010-0665-y
10.1007/s11104-010-0665-yKuzyakov Y, Domanski G. 2000. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163:421-431. https://doi.org/10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLiang Y, Yang Y, Yang C, Shen Q, Zhou J, Yang L. 2003. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 115:149-160. https://doi.org/10.1016/S0016-7061(03)00084-3
10.1016/S0016-7061(03)00084-3Moeskops B, Sukristiyonubowo, Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, Neve SD. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol. 45:112-120. https://doi.org/10.1016/j.apsoil.2010.03.005
10.1016/j.apsoil.2010.03.005Nam HS, Kwak JH, Lim SS, Choi WJ, Lee SI, Lee DS, Lee KS, Kim HY, Lee SM, Matsushima M. 2013. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2. Plant Soil 369:563-575. https://doi.org/10.1007/s11104-013-1598-z
10.1007/s11104-013-1598-zNannipieri P, Muccini L, Ciardi C. 1983. Microbial biomass and enzyme acitivites: Production and persistence. Soil Biol. Biochem. 15:679-685. https://doi.org/10.1016/0038-0717(83)90032-9
10.1016/0038-0717(83)90032-9Nottingham AT, Turner BL, Whitaker J, Ostle N, Bardgett RD, McNamara NP, Salinas N, Meir P. 2016. Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry 127:217-230. https://doi.org/10.1007/s10533-015-0176-2
10.1007/s10533-015-0176-2Qi R, Li J, Lin Z, Li Z, Li Y, Yang X, Zhang J, Zhao B. 2016. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102:36-45. https://doi.org/10.1016/j.apsoil.2016.02.004
10.1016/j.apsoil.2016.02.004Razavi BS, Blagodatskaya E, Kuzyakov Y. 2015. Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect-a case study on loamy haplic Luvisol. Front. Microbiol. 6:1126. https://doi.org/10.3389/fmicb.2015.01126
10.3389/fmicb.2015.0112626528272PMC4604301Razavi BS, Liu S, Kuzyakov Y. 2017. Hot experience for cold-adapted microorganisms: Temperature sensitivity of soil enzymes. Soil Biol. Biochem. 105:236-243. https://doi.org/10.1016/j.soilbio.2016.11.026
10.1016/j.soilbio.2016.11.026Saha S, Prakash V, Kundu S, Kumar N, Mina BL. 2008. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya. Eur. J. Soil Biol. 44:309-315. https://doi.org/10.1016/j.ejsobi.2008.02.004
10.1016/j.ejsobi.2008.02.004Sardans J, Peñuelas J, Estiarte M. 2006. Warming and drought alter soil phosphatase and soil P availability in a Mediterranean shrubland. Plant Soil 289:227-238. https://doi.org/10.1007/s11104-006-9131-2
10.1007/s11104-006-9131-2Shackle VJ, Freeman C, Reynolds B. 2000. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol. Biochem. 32:1935-1940. https://doi.org/10.1016/S0038-0717(00)00169-3
10.1016/S0038-0717(00)00169-3Shen Y, Xu L, Guo H, Ismail H, Ran X, Zhang C, Peng Y, Zhao Y, Liu W, Ding Y, Tang S. 2023. Mitigating the adverse effect of warming on rice canopy and rhizosphere microbial community by nitrogen application: An approach to counteract future climate change for rice. Sci. Total Environ. 905:167151. https://doi.org/10.1016/j.scitotenv.2023.167151
10.1016/j.scitotenv.2023.16715137730044Sinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ. 2003. Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl. Soil Ecol. 24:263-271. https://doi.org/10.1016/S0929-1393(03)00002-7
10.1016/S0929-1393(03)00002-7Sinsabaugh RL, Shah JJF. 2012. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43:313-343. https://doi.org/10.1146/annurev-ecolsys-071112-124414
10.1146/annurev-ecolsys-071112-124414Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42:391-404. https://doi.org/10.1016/j.soilbio.2009.10.014
10.1016/j.soilbio.2009.10.014Steinweg JM, Dukes JS, Wallenstein MD. 2012. Modeling the effects of temperature and moisture on soil enzyme activity: Linking laboratory assays to continuous field data. Soil Biol. Biochem. 55:85-92. https://doi.org/10.1016/j.soilbio.2012.06.015
10.1016/j.soilbio.2012.06.015Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD. 2012. Temperature sensitivity of soil enzyme kinetics under N fertilization in two temperate forests. Glob. Change Biol. 18:1173-1184. https://doi.org/10.1111/j.1365-2486.2011.02545.x
10.1111/j.1365-2486.2011.02545.xUwituze Y, Nyiraneza J, Fraser TD, Dessureaut-Rompré J, Ziadi N, Lafond J. 2022. Carbon, nitrogen, phosphorus, and extracellular soil enzyme responses to different land use. Front. Soil Sci. 2:814554. https://doi.org/10.3389/fsoil.2022.814554
10.3389/fsoil.2022.814554Wang W, Yu Z, Zhang W, Shao Q, Zhang Y, Luo Y, Jiao X, Xu J. 2014. Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agric. Water Manage. 146:249-261. https://doi.org/10.1016/j.agwat.2014.08.019
10.1016/j.agwat.2014.08.019Wei L, Ge T, Zhu Z, Ye R, Peñuelas J, Li Y, Lynn TM, Jones DL, Wu J, Kuzyakov Y. 2022. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agric. Ecosyst. Environ. 326:107798. https://doi.org/10.1016/j.agee.2021.107798
10.1016/j.agee.2021.107798Wei L, Razavi BS, Wang W, Zhu Z, Liu S, Wu J, Kuzyakov Y, Ge T. 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biol. Biochem. 135:134-143.
10.1016/j.soilbio.2019.04.016Wen X, Kellum JA. 2012. N-Acetyl-beta-D-Glucosaminidase (NAG). In Vincent JL, Hall JB (Eds.) Encyclopedia of intensive care medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00418-6_305
10.1007/978-3-642-00418-6_305Zeglin LH, Kluber LA, Myrold DD. 2013. The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats. Biogeochemistry 112:679-693. https://doi.org/10.1007/s10533-012-9746-8
10.1007/s10533-012-9746-8Zuccarini P, Asensio D, Ogaya R, Sardans J. 2020. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 26:3698-3714. https://doi.org/10.1111/gcb.15077
10.1111/gcb.1507732159881- Publisher :Korean Society of Soil Science and Fertilizer
- Publisher(Ko) :한국토양비료학회
- Journal Title :Korean Journal of Soil Science and Fertilizer
- Journal Title(Ko) :한국토양비료학회 학회지
- Volume : 57
- No :2
- Pages :106-117
- Received Date : 2024-05-07
- Revised Date : 2024-05-26
- Accepted Date : 2024-05-27
- DOI :https://doi.org/10.7745/KJSSF.2024.57.2.106