All Issue

2024 Vol.57, Issue 2 Preview Page

Original research article

31 May 2024. pp. 96-105
Abstract
References
1

Akumuntu A, Hong JK, Jho EH, Omidoyin KC, Park SJ, Zhang Q, Zhao X. 2024. Biochar derived from rice husk: Impact on soil enzyme and microbial dynamics, lettuce growth, and toxicity. Chemosphere 349:140868. https://doi.org/10.1016/j.chemosphere.2023.140868

10.1016/j.chemosphere.2023.14086838052311
2

Bremner JM. 1996. Nitrogen-Total. p. 1089-1108. In Sparks DL et al. (Eds.) Methods of soil analysis Part 3, Chemical Methods (5th ed.). Soil Science Society of America, Madison, WI, USA.

3

Budai A, Rasse DP, Lagomarsino A, Lerch TZ, Paruch L. 2016. Biochar persistence, priming and microbial responses to pyrolysis temperature series. Biol. Fertil. Soils 52:749-761. https://doi.org/10.1007/s00374-016-1116-6

10.1007/s00374-016-1116-6
4

Cheah S, Malone SC, Feik CJ. 2014. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ. Sci. Technol. 48:8474-8480. https://doi.org/10.1021/es500073r

10.1021/es500073r25003702PMC4123929
5

Chen J, Li S, Liang C, Xu Q, Li Y, Qin HJ, Fuhrmann JJ. 2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci. Total Environ. 574:24-33. https://doi.org/10.1016/j.scitotenv2016.08.190.

10.1016/j.scitotenv.2016.08.19027621090
6

Chen L, Guo L, Xiong Q, Liao P, Deng X, Pan X, Tan X, Xie X, Dai Q, Gao. H, et al. 2023. Biochar-mediated Cd accumulation in rice grains through altering chemical forms, subcellular distribution, and physiological characteristics. Biochar 5:48. https://doi.org/10.1007/s42773-023-00248-4

10.1007/s42773-023-00248-4
7

Ding X, Li G, Zhao X, Lin Q, Wang X. 2023. Biochar application significantly increases soil organic carbon under conservation tillage: an 11-year field experiment. Biochar 5:28. https://doi.org/10.1007/s42773-023-00226-w

10.1007/s42773-023-00226-w
8

Edussuriya R, Rajapaksha AU, Jayasinghe C, Pathirana C, Vithanage M. 2023. Influence of biochar on growth performances, yield of root and tuber crops and controlling plant-parasitic nematodes. Biochar 5:68. https://doi.org/10.1007/s42773-023-00261-7

10.1007/s42773-023-00261-7
9

Fidel RB, Laird DA, Thompson ML, Lawrinenko M. 2017. Characterization and quantification of biochar alkalinity. Chemosphere. 167:367-373. https://doi.org/10.1016/j.chemosphere.2016.09.151

10.1016/j.chemosphere.2016.09.15127743533
10

Hammes K, Schmidt MWI. 2009. Changes of biochar in soil. pp. 169-182. In Lehmann J, Joseph S (Eds.) Biochar for environmental management: science and technology. Earthscan, London, UK.

11

Humberto BC. 2017. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 81:687-711. https://doi.org/10.2136/sssaj2017.01.0017

10.2136/sssaj2017.01.0017
12

Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O. 2017. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7:44382. https://doi.org/10.1038/srep44382

10.1038/srep4438228287177PMC5347032
13

Kang SW, Seo DC, Cheong YH, Park JW, Kang HW, Park KD, Ok YS, Cho JS. 2016. Effect of barley straw biochar application on greenhouse gas emissions from upland soil for Chinese cabbage cultivation in short-term laboratory experiments. J. Mountain Sci. 13:693-702. https://doi.org/10.1007/s11629-014-3428-z

10.1007/s11629-014-3428-z
14

Kang SW, Kim SH, Park JH, Seo DC, Cho JS. 2017. Selection of optimal application condition of corn waste biochar for improvement of corn growth and soil fertility. Korean J. Soil Sci. Fert. 50(5):452-461. https://doi.org/10.7745/KJSSF.2017.50.5.452

10.7745/KJSSF.2017.50.5.452
15

Kim SH, Lee DW, Jeong YJ, Byeon JE, Jeon SH, Lee YH, Kwon SI, Shim JH. 2022a. Characteristics of biochars derived from greenhouse crop wastes under different pyrolysis temperature and time conditions. Korean J. Soil Sci. Fert. 55(4):556-562. https://doi.org/10.7745/KJSSF.2022.55.4.556

10.7745/KJSSF.2022.55.4.556
16

Kim YS, Kim KH, Han JW, Jeong TG, Kim MJ, Kim IJ. 2022b. Effect of rice hull-derived biochar application on watermelon growth, and soil physico-chemical properties under greenhouse. Korean J. Soil Sci. Fert. 55(3):175-184. https://doi.org/10.7745/KJSSF.2022.55.3.175

10.7745/KJSSF.2022.55.3.175
17

Lee SG, Kim SH, Park JH, Yun JJ, Kang SW, Cho JS. 2022. Evaluation of greenhouse gas emission and crop growth in Chinese cabbage cultivation using biochar. Korean J. Soil Sci. Fert. 55(4):455-463. https://doi.org/10.7745/KJSSF.2022.55.4.455

10.7745/KJSSF.2022.55.4.455
18

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems-A review. Mitigation Adapt. Strategies Global Change 11:403-427. https://doi.org/10.1007/s11027-005-9006-5

10.1007/s11027-005-9006-5
19

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - A review. Soil Biol. Biochem. 43:1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022

10.1016/j.soilbio.2011.04.022
20

Masud MM, Baquy MAA, Akhter S, Sen R, Barman A, Khatun MR. 2020. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 202:110865. https://doi.org/10.1016/j.ecoenv.2020.110865

10.1016/j.ecoenv.2020.11086532570103
21

Morales MM, Comerford N, Guerrini IA, Falcao NPS, Reeves JB. 2013. Sorption and desorption of phosphate on biochar and biochar-soil mixtures. Soil Use Manage. 29:306-314. https://doi.org/10.1111/sum.12047

10.1111/sum.12047
22

Mukherjee A, Zimmerman AR. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar - soil mixtures. Geoderma 193:122-130. https://doi.org/10.1016/j.geoderma.2012.10.002

10.1016/j.geoderma.2012.10.002
23

NAS (National Institute of Agricultural Science). 2019. Fertilizer application recommendations for crop plants. RDA, Wanju, Korea.

24

Nelson DW, Sommers LE. 1996. Organic carbon. p. 961-1010. In Sparks DL et al. (Eds.) Methods of soil analysis, Part 3. Chemical Methods (5th ed.). Soil Science Society of America, Madison, WI, USA.

25

NIAST (National Institute of Agricultural Science and Technology). 2000. Methods of soil and plant analysis. RDA, Suwon, Korea.

26

Nogues I, Mazzurco Miritana V, Passatore L, Zacchini M, Peruzzi E, Carloni S, Pietrini F, Marabottini R, Chiti T, Massaccesi L, et al. 2023. Biochar soil amendment as carbon farming practice in a mediterranean environment. Geoderma Reg. 33:e00634. https://doi.org/10.1016/j.geodrs.2023.e00634

10.1016/j.geodrs.2023.e00634
27

Park C, Lee N, Kim J, Lee J. 2021. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environ. Pollut. 270:116045. https://doi.org/10.1016/j.envpol.2020.116045

10.1016/j.envpol.2020.11604533257148
28

Paz-Ferreiro J, Fu S, Méndez A, Gascó G. 2014. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J. Soils Sediments 14:483-494. https://doi.org/10.1007/s11368-013-0806-z

10.1007/s11368-013-0806-z
29

Qasim B, Razzak AA, Rasheed RT. 2021. Effect of biochar amendment on mobility and plant uptake of Zn, Pb and Cd in contaminated soil. IOP Conf. Ser. Earth Environ. Sci. 779:012082. https://doi.org/10.1088/1755-1315/779/1/012082

10.1088/1755-1315/779/1/012082
30

Razzaghi F, Obour PB, Arthur E. 2020. Does biochar improve soil water retention? A Systematic review and meta-analysis. Geoderma 361:114055. https://doi.org/10.1016/j.geoderma.2019.114055

10.1016/j.geoderma.2019.114055
31

RDA (Rural Development Administration). 2012. Standard of analysis and survey for agricultural experiment. RDA, Suwon, Korea.

32

Roy R, Núnez-Delgado A, Wang J, Kader MA, Sarker T, Hasan AK, Dindaroglu T. 2022. Cattle manure compost and biochar supplementation improve growth of Onobrychis viciifolia in coal-mined spoils under water stress conditions. Environ. Res. 205:112440. https://doi.org/10.1016/j.envres.2021.112440

10.1016/j.envres.2021.11244034843727
33

Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse DP, Valentin C, Mariotti A. 2006. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130:35-46. https://doi.org/10.1016/j.geoderma.2005.01.007

10.1016/j.geoderma.2005.01.007
34

Schneider F, Haderlein SB. 2016. Potential effects of biochar on the availability of phosphorus-mechanistic insights. Geoderma 277:83-90. https://doi.org/10.1016/j.geoderma.2016.05.007

10.1016/j.geoderma.2016.05.007
35

Singh H, Northup BK, Rice CW, Prasad PVV. 2022. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4:8. https://doi.org/10.1007/s42773-022-00138-1

10.1007/s42773-022-00138-1
36

Sorensen RB, Lamb MC. 2016. Crop yield response to increasing biochar rates. J. Crop Improv. 30(6):703-712. https://doi.org/10.1080/15427528.2016.1231728

10.1080/15427528.2016.1231728
37

Wang Q, Xu L, Guo D, Wang G, Song X, Ma Y. 2021. The continuous application of biochar in field: effects on P fraction, P sorption and release. Chemosphere 263:128084. https://doi.org/10.1016/j.chemosphere.2020.128084

10.1016/j.chemosphere.2020.12808433297082
38

Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nat. Commun. 1(56):1-9. https://doi.org/10.1038/ncomms1053

10.1038/ncomms105320975722PMC2964457
39

Yi YS, Cho HJ, Heo JY, Lee YH. 2019. Effects of wood-derived biochar application on soil chemical properties and growth of lettuce (Lactuca sativa L.). Korean J. Soil Sci. Fert. 52(4):457-466. https://doi.org/10.7745/KJSSF.2019.52.4.457

10.7745/KJSSF.2019.52.4.457
40

Yin YF, He XH, Gao R, Ma HL, Yang YS. 2014. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon. J. Integr. Agric. 13(3):491-498. https://doi.org/10.1016/S2095-3119(13)60704-2

10.1016/S2095-3119(13)60704-2
41

Yuan JH, Xu RK, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102:3488-3497. https://doi.org/10.1016/j.biortech.2010.11.018

10.1016/j.biortech.2010.11.01821112777
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 57
  • No :2
  • Pages :96-105
  • Received Date : 2024-02-21
  • Revised Date : 2024-04-01
  • Accepted Date : 2024-04-05