All Issue

2021 Vol.54, Issue 4 Preview Page

Article

30 November 2021. pp. 601-609
Abstract
References
1
Antoniadis, V., S.M. Shaheen, E. Levozou, M. Shahid, N.K. Niazi, M. Vithanage, Y.S. Ok, N. Bolan, and J. Rinklebe. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environ. Int. 127:819-847. 10.1016/j.envint.2019.03.03931051325
2
ATSDR. 2019. ATSDR’s substance priority list. https://www.atsdr.cdc.gov/SPL/#2019spl.
3
Bolan, N., S. Mahimairaja, A. Kunhikrishnan, and G. Choppala. 2013. Phosphorus-arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci. Total Environ. 463-464:1154-1162. 10.1016/j.scitotenv.2013.04.01623639210
4
Cao, X., L.Q. Ma, and A. Shiralipour. 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 126:157-167. 10.1016/S0269-7491(03)00208-2
5
Cappuyns, V., S.V. Herreweghe, R. Swennen, R. Ottenburgs, and J. Deckers. 2002. Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Sci. Total Environ. 295:217-240. 10.1016/S0048-9697(02)00096-7
6
Choi, Y.L., D.S. Kim, T.J. Kang, J.K. Yang, and Y.Y. Chang. 2021. Immobilization of As and Pb in contaminated soil using bead type amendment prepared by iron nanoparticles impregnated biochar. J. Environ. Impact Assess. 30(4):247-257.
7
Coelho, D.G., C.S. Marinato, L.P. de Matos, H.M., de Andrade, V.M. da Silva, P.H. Santos-Neves, S.C. Araújo, and J.A. Oliveira. 2020. Is arsenite more toxic than arsenate in plants?. Ecotoxicology 29:196-202. 10.1007/s10646-019-02152-931982987
8
Dradrach, A., A. Karczewska, and K. Szopka. 2020. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils - Findings from the field and greenhouse studies. Chemosphere 248:126045. 10.1016/j.chemosphere.2020.12604532050316
9
Finnegan, P.M. and W. Chen. 2012. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 33:182. 10.3389/fphys.2012.0018222685440PMC3368394
10
IARC. 2004. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr. Eval. Carcinog. Risks Hum. 84:1-477.
11
Jiang, W., Q. Hou, Z. Yang, C. Zhong, G. Zheng, Z. Yang, and J. Li. 2004. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ. Pollut. 188:159-165. 10.1016/j.envpol.2014.02.01424598788
12
Jung, H.I., J. Lee, M.J. Chae, M.S. Kong, C.H. Lee, S.S. Kang, and Y.H. Kim. 2017. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environ. Monit. Assess. 189:638. 10.1007/s10661-017-6350-329147882PMC5691118
13
Kaya, C., M. Ashraf, M.N. Alyemeni, F.J. Corpas, and P. Ahmad. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J. Hazard. Mater. 399:123020. 10.1016/j.jhazmat.2020.12302032526442
14
Kim, D.Y., K.H. Kim, D. Lee, M. Lee, and K.R. Kim. 2020. Factors of soil properties and elements in tissues influencing on extent of arsenic accumulation in brown rice. Korean J. Soil Sci. Fert. 53(1):41-49.
15
Kim, H., M. Lee, H.S. Kim, and K.R. Kim. 2019. Exploration of heavy metal(loid)s immobilizing agents available for agricultural lands and their combination effects. Korean J. Soil Sci. Fert. 52(3):297-306.
16
Kim, K.R., J.G. Kim, J.S. Park, M.S. Kim, G. Owens, G.H. Youn, and J.S. Lee. 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manage. 102(15):88-95. 10.1016/j.jenvman.2012.02.001
17
Kim, M.S., H. Min, J.G. Kim, N. Koo, J.S. Park, and G.I. Bak. 2014. Effects of various amendments on heavy metal stabilization in acid and alkali soils. Korean J. Environ. Agric. 33(1):1-8. 10.5338/KJEA.2014.33.1.1
18
Kumarathilaka, P., S. Seneweera, A. Meharg, and J. Bundschuh. 2018. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci. Total Environ. 642:485-496. 10.1016/j.scitotenv.2018.06.03029908507
19
Lee, S., H.S. Kim, S.W. Park, I.K. Cho, and W.I. Kim. 2017. Prediction of arsenic uptake by rice in the paddy fields vulnerable to arsenic contamination. Korean J. Soil Sci. Fert. 50(2):115-126. 10.7745/KJSSF.2017.50.2.115
20
Liu, Q., C. Hu, Q. Tan, X. Sun, J. Su, and Y. Liang. 2008. Effects of as on as uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J. Environ. Sci. 20(3):326-331. 10.1016/S1001-0742(08)60051-0
21
Mehlich, A. 1984. Mehlich-3 soil test extraction-a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15:1409-1416. 10.1080/00103628409367568
22
Muehe, E.M., T.M. Wang, C.F. Kerl, B. Planer-Friedrich, and S. Fendorf. 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10:4985. 10.1038/s41467-019-12946-431676771PMC6825132
23
RDA. 2012. Analysis standard for research in agricultural science and technology. RDA, Suwon, Korea.
24
Seo, B.H., H.U. Kim, C.S. Lwin, H.S. Kim, and K.R. Kim. 2017. Application of practical immobilizing agents for declining heavy metal (loid)s accumulation by agricultural crop (Allium wakegi Araki). Korean J. Soil Sci. Fert. 50(4):226-234. 10.7745/KJSSF.2017.50.4.226
25
Siddiqui, M.H., S. Alamri, M.N. Khan, F.J. Corpas, A.A. Al-Amri, Q.D. Alsubaie, H.M. Ali, H.M. Kalaji, and P. Ahmad. 2020. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J. Hazard. Mater. 398:122882. 10.1016/j.jhazmat.2020.12288232516727
26
Subrahmanyam, G., H.W. Hu, Y.M., Zheng, G. Archana, J.Z. He, and Y.R. Liu. 2014. Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Appl. Soil Ecol. 77:59-67. 10.1016/j.apsoil.2014.01.011
27
Verma, G., D. Srivastava, S. Narayan, P.A. Shirke, and D. Chakrabarty. 2020. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 201:110735. 10.1016/j.ecoenv.2020.11073532480163
28
Yun, S.W., S.I. Kang, H.G. Jin, H.J. Kim, Y.C. Lim, J.M. Yi, and C. Yu. 2011. An investigation of treatment effects of limestone and steel refining slag for stabilization of arsenic and heavy metal in the farmland soils nearby abandoned metal mine. Korean J. Soil Sci. Fert. 44(5):734-744. 10.7745/KJSSF.2011.44.5.734
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :4
  • Pages :601-609
  • Received Date :2021. 11. 02
  • Revised Date :2021. 11. 20
  • Accepted Date : 2021. 11. 23