All Issue

2021 Vol.54, Issue 3 Preview Page


August 2021. pp. 297-310
Abraham, A.O., M.D. Laing, and J.P. Bower. 2010. Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit. Biol. Control. 53(1):32-38. 10.1016/j.biocontrol.2009.12.009
Ahmad, F., F.M. Husain, and I. Ahmad. 2011. Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: A critical area in PGPR research. pp. 363-391. In I. Ahmad, F. Ahmad, and J. Pichtel (eds.) Microbes and microbial technology. Springer, New York, NY. 10.1007/978-1-4419-7931-5_1422209273
Aktar, W., D. Sengupta, and A. Chowdhury. 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2(1):1-12. 10.2478/v10102-009-0001-721217838PMC2984095
Aktuganov, G., A. Melentjev, N. Galimzianova, E. Khalikova, T. Korpela, and P. Susi. 2008. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-Xb and its dependence on chitinase and β-1, 3-glucanase production. Can. J. Microbiol. 54(7):577-587. 10.1139/W08-04318641704
Arora, N.K., M.J. Kim, S.C. Kang, and D.K. Maheshwari. 2007. Role of chitinase and β-1,3- glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53(2):207-212. 10.1139/w06-11917496968
Bejarano, A. and G. Puopolo. 2020. Bioformulation of microbial biocontrol agents for a sustainable agriculture. pp. 275-293. In A. De Cal, P. Melgarejo, and N. Magan (eds.) How research can stimulate the development of commercial biological control against plant diseases. Springer, Cham, Switzerland. 10.1007/978-3-030-53238-3_16
Choi, T.G., C.E.H. Maung, D.R. Lee, A.B. Henry, Y.S. Lee, and K.Y. Kim. 2020. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Sci. Techol. 30(7):685-700. 10.1080/09583157.2020.1765980
Choub, V., C.E.H. Maung, S.J. Won, J.H. Moon, K.Y. Kim, Y.S. Han, J.Y. Cho, and Y.S. Ahn. 2021. Antifungal activity of cyclic tetrapeptide from Bacillus velezensis CE 100 against plant pathogen Colletotrichum gloeosporioides. Pathogens 10(2):209. 10.3390/pathogens1002020933672094PMC7919652
Droby, S. 2006. Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Hortic. 709:45-51. 10.17660/ActaHortic.2006.709.5
Fravel, D.R. 2005. Commercialization and implementatation of biocontrol. Annu. Rev. Phytopathl. 43:337-359. 10.1146/annurev.phyto.43.032904.09292416078888
Gopal, K., L.M. Lakshmi, G. Sarada, T. Nagalakshmi, T. GouriSankar, V. Gopi, and K. Ramana. 2014. Citrus melanose (Diaporthe citri Wolf): A review. Int. J. Curr. Microbiol. Appl. Sci. 3:113-124.
Hyun, J.W., J.H. Park, K.S. Kim, G.J. Park, and S.H. Yoon. 2011. Collage tree-Mandarin story: Dreaming of a citrus renaissance. Suwon, Korea: RDA.
Hyun, J.W., S.W. Ko, D.H. Kim, S.G. Han, K.S. Kim, H.M. Kwon, and H.C. Lim. 2005. Effective usage of copper fungicides for environment-friendly control of citrus diseases. Res. Plant Dis. 11(2):115-121. 10.5423/RPD.2005.11.2.115
Jackson, M.A. 1997. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J. Ind. Microbiol. Biotechnol. 19(3):180-187. 10.1038/sj.jim.2900426
Jin, Q. and M. Kirk. 2018. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front. Environ. Sci. 6:21. 10.3389/fenvs.2018.00021
Jin, Q., Q. Jiang, L. Zhao, C. Su, S. Li, F. Si, and M. Xiao. 2017. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. J. Biotechnol. 259:199-203. 10.1016/j.jbiotec.2017.07.01128711664
Khabbaz, S., L. Zhang, L. Cáceres, M. Sumarah, A. Wang, and P. Abbasi. 2015. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann. Appl. Biol. 166(3):456-471. 10.1111/aab.12196
Ko, Y.J., J.S. Kim, K.D. Kim, and Y.C. Jeun. 2014. Microscopical observation of inhibition-behaviors against Diaporthe citri by pre-treated with Pseudomonas putida strain THJ609-3 on the leaves of citrus plants. J. Microbiol. 52(10):879-883. 10.1007/s12275-014-4399-z25269607
Ko, Y.J., S.Y. Kang, and Y.C. Jeun. 2012. Suppression of citrus melanose on the leaves treated with Rhizobacterial strains after inoculation with Diaporthe citri. Res. Plant Dis. 18(4), 331-337. 10.5423/RPD.2012.18.4.331
Köhl, J., R. Kolnaar, and W.J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci.10:845. 10.3389/fpls.2019.0084531379891PMC6658832
Kumar, A., A. Prakash, and B.N. Johri. 2011. Bacillus as PGPR in crop ecosystem. pp. 37-59. In D.K. Maheshwari (ed.) Bacteria in agrobiology: Crop ecosystems. Springer, Berlin, Heidelberg. 10.1007/978-3-642-18357-7_2
Kwon, H.M., K.W. Nam, K.S. Kim, D.H. Kim, S.C. Lee, and J.W. Hyeon. 2003. Characterization of the causal fungus of citrus melanose, Diaphorthe citri isolated from blighted twigs of citrus in Jeju. Res. Plant Dis. 9(3):153-158. 10.5423/RPD.2003.9.3.153
Lee, D.R., C.E.H. Maung, A. Henry, and K.Y. Kim. 2019. Effect of large-scale cultivation of Bacillus amyloliquefaciens Y1 using fertilizer based medium for control of citrus melanose causing Diaporthe citri. Korean J. Soil Sci. Fert. 52(2):84-92.
Lewis, J.A. 1991. Formulation and delivery systems of biocontrol agents with emphasis on fungi. pp. 279-287. In D.L. Keister and P.B. Cregan (eds.) The rhizosphere and plant growth. Springer, Dordrecht, Netherlands. 10.1007/978-94-011-3336-4_55
Liu, Y., J. Tao, Y. Yan, B. Li, H. Li, and C. Li. 2011. Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase. Chin. J. Chem. Eng. 19(1):128-134. 10.1016/S1004-9541(09)60188-9
Magnuson, J.K. and L.L. Lasure. 2004. Organic acid production by filamentous fungi. pp. 307-340. In J.S. Tkacz and L. Lange (eds.) Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, MA. 10.1007/978-1-4419-8859-1_12
Maung, C.E.H., W.S. Baek, T.G. Choi, and K.Y. Kim. 2021. Control of grey mould disease on strawberry using the effective agent, Bacillus amyloliquefaciens Y1. Biocontrol Sci. Technol. 31(5):468-482. 10.1080/09583157.2020.1867707
Meena, K.R. and S.S. Kanwar. 2015. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. BioMed Res. Int. 2015:473050. 10.1155/2015/47305025632392PMC4303012
Moon, J.H, S.J. Won, C.E.H. Maung, J.H. Choi, S.I. Choi, H.B. Ajuna, and Y.S. Ahn. 2021. Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes growth of Japanese cypress (Chamaecyparis obtusa Endlicher) seedlings. Microorganisms 9(4):821. 10.3390/microorganisms904082133924463PMC8069221
Naing, K.W., M. Anees, S.J. Kim, Y. Nam, Y.C. Kim, and K.Y. Kim. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64(1):55-63. 10.1007/s13213-013-0632-y
Nam, M.H., J.H. Shin, J.P. Choi, S.I. Hong, Y.G. Kim, and H.T. Kim. 2009. Identification of Rhizo-bacterium inhibiting Diaporthe citri causing citrus melanose. Korean J. Pestic. Sci. 13(4):332-335.
Pathak, D.V., R. Yadav, and M. Kumar. 2017. Microbial pesticides: Development, prospects and popularization in India. pp. 455-471. In D. Singh, H. Singh, and R. Prabha (eds.) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore. 10.1007/978-981-10-6593-4_1829258713
Regassa, A.B., T.G. Choi, Y.S. Lee, and K.Y. Kim. 2018. Supplementing biocontrol efficacy of Bacillus velezensis against Glomerella cingulata. Physiol. Mol. Plant Pathol. 102:173-179. 10.1016/j.pmpp.2018.03.002
Shafi, J., H. Tian, and M. Ji. 2017. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 31(3):446-459. 10.1080/13102818.2017.1286950
Slininger, P.J. and M.A. Shea-Wilbur. 1995. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol. 43(5):794-800. 10.1007/BF024319107576546
Sylvia, D.M., J.J. Fuhrmann, P.G. Hartel, and D.A. Zuberer. 2005. Principles and applications of soil microbiology. Upper Saddle River, NJ: Prentice Hall.
Timmer, L.W., S.N. Mondal, N.A.R. Peres, and A. Bhatia. 2004. Fungal diseases of fruit and foliage of citrus trees. pp. 191-227. In S.A.M.H. Naqvi (ed.) Diseases of fruits and vegetables Volume I. Springer, Dordrecht, Netherlands. 10.1007/1-4020-2606-4_3
Turner, T. and B. Burri. 2013. Potential nutritional benefits of current citrus consumption. Agriculture 3(1):170-187. 10.3390/agriculture3010170
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :3
  • Pages :297-310
  • Received Date :2021. 07. 05
  • Revised Date :2021. 08. 03
  • Accepted Date : 2021. 08. 11