All Issue

2022 Vol.55, Issue 4 Preview Page

Original research article

30 November 2022. pp. 511-521
Abstract
References
1
Abedin, M.J., J. Feldmann, and A.A. Meharg. 2002. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 128:1120-1128. 10.1104/pp.01073311891266PMC152223
2
Bardgett, R.D., T.W. Speir, D.J. Ross, G.W. Yeates, and H.A. Kettles. 1994. Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol. Fertil. Soils 18:71-79. 10.1007/BF00336448
3
Burton, E.D., S.G. Johnston, and B.D. Kocar. 2014. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ. Sci. Technol. 48:13660-13667. 10.1021/es503963k25346449
4
Casida Jr, L.E., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98:371-376. 10.1097/00010694-196412000-00004
5
Cenini, V.L., D.A. Fornara, G. McMullan, N. Ternan, R. Carolan, M.J. Crawley, J.C. Clément, and S. Lavorel. 2016. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil Biol. Biochem. 96:198-206. 10.1016/j.soilbio.2016.02.015
6
Cox, P.A. 1995. The elements on earth: Inorganic chemistry in the environment. Oxford University Press, Oxford, UK.
7
Dick, R.P. 1997. Biological indicators of soil health. p. 121-156. In C. Pankhurst et al. (ed.) Soil enzyme activities as integrative indicators of soil health. Cab International, Wallingford, UK.
8
Dixit, G., A.P. Singh, A. Kumar, P.K. Singh, S. Kumar, S. Dwivedi, P.K. Trivedi, V. Pandey, G.J. Norton, O.P. Dhankher, and R.D. Tripathi. 2015. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J. Hazard. Mater. 298:241-251. 10.1016/j.jhazmat.2015.06.00826073379
9
Eivazi, F. and M.A. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 20:601-606. 10.1016/0038-0717(88)90141-1
10
Fan, J., X. Xia, Z. Hu, N. Ziadi, and C. Liu. 2013. Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil Environ. 59:169-174. 10.17221/882/2012-PSE
11
Frankenberger Jr, W.T. and J.B. Johanson. 1982. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 14:433-437. 10.1016/0038-0717(82)90101-8
12
Hagmann, D.F., N.M. Goodey, C. Mathieu, J. Evans, M.F. Aronson, F. Gallagher, and J.A. Krumins. 2015. Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol. Biochem. 91:291-297. 10.1016/j.soilbio.2015.09.012
13
Hinojosa, M.B., J.A. Carreira, R. Garcia-Ruiz, and R.P. Dick. 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol. Biochem. 36:1559-1568. 10.1016/j.soilbio.2004.07.003
14
Hinojosa, M.B., J.A. Carreira, R. García-Ruíz, and R.P. Dick. 2005. Microbial response to heavy metal-polluted soils: Community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. J. Environ. Qual. 34:1789-1800. 10.2134/jeq2004.047016151231
15
Hu, Z.Y., Y.G. Zhu, M. Li, L.G. Zhang, Z.H. Cao, and F.A. Smith. 2007. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 147:387-393. 10.1016/j.envpol.2006.06.01416996667
16
Hueso, S., T. Hernández, and C. García. 2011. Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: The importance of organic amendments. Appl. Soil Ecol. 50:27-36. 10.1016/j.apsoil.2011.07.014
17
Juma, N.G. and M.A. Tabatabai. 1977. Effects of trace elements on phosphatase activity in soils. Soil Sci. Soc. Am. J. 41:343-346. 10.2136/sssaj1977.03615995004100020034x
18
Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6:68-72. 10.1007/BF00257924
19
Karaca, A., S.C. Cetin, O.C. Turgay, and R. Kizilkaya. 2010. Effects of heavy metals on soil enzyme activities. p. 237-262. In I. Sherameti et al. (ed.) Soil heavy metals. Springer, Berlin, Heidelberg, Germany. 10.1007/978-3-642-02436-8_11
20
Kim, J.W., Y.K. Hong, H.S. Kim, E.J. Oh, Y.H. Park, and S.C. Kim. 2022. Assessment of soil enzyme activities in TPH-contaminated soil after soil washing and landfarming application. Korean J. Soil Sci. Fert. 55:13-19. 10.7745/KJSSF.2022.55.1.013
21
Lee, C.H., C.H. Wu, C.H. Syu, P.Y. Jiang, C.C. Huang, and D.Y. Lee. 2016. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60-67. 10.1016/j.geoderma.2016.01.003
22
Lorenz, N., T. Hintemann, T. Kramarewa, A. Katayama, T. Yasuta, P. Marschner, and E. Kandeler. 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol. Biochem. 38:1430-1437. 10.1016/j.soilbio.2005.10.020
23
Majumder, S., M.A. Powell, P.K. Biswas, and P. Banik. 2022. The impact of Arsenic induced stress on soil enzyme activity in different rice agroecosystems. Environ. Technol. Innovation 26:102282. 10.1016/j.eti.2022.102282
24
MOE. 1999. Official methods of soil analysis for polluted soils. Ministry of Environment, Gwacheon, Korea.
25
MOE. 2010. Official methods of soil analysis for polluted soils. Ministry of Environment, Sejong, Korea.
26
Mukhopadhyay, S., M.A. Hashim, M. Allen, and B. Sen Gupta. 2015. Arsenic removal from soil with high iron content using a natural surfactant and phosphate. Int. J. Environ. Sci. Technol. 12:617-632. 10.1007/s13762-013-0441-7
27
Neupane, G. and R.J. Donahoe. 2013. Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl. Geochem. 28:145-154. 10.1016/j.apgeochem.2012.10.011
28
NIAS. 2010. Methods of soil chemical analysis. National Institute of Agricultural Sciences, Wanju, Korea.
29
NIAS. 2013. Monitoring project on agro-environmental quality in Korea. National Institute of Agricultural Sciences, Wanju, Korea.
30
Pulford, I. and M. Tabatabai. 1988. Effect of waterlogging on enzyme activities in soils. Soil Biol. Biochem. 20:215-219. 10.1016/0038-0717(88)90039-9
31
Renella, G., M. Mench, A. Gelsomino, L. Landi, and P. Nannipieri. 2005. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol. Biochem. 37:1498-1506. 10.1016/j.soilbio.2005.01.013
32
Ros, M., J.A. Pascual, C. García, M.T. Hernández, and H. Insem. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38:3443-3452. 10.1016/j.soilbio.2006.05.017
33
Saalfield, S.L. and B.C. Bostick. 2009. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 43:8787-8793. 10.1021/es901651k19943647
34
Sanderson, P., R. Naidu, and N. Bolan. 2014. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicol. Environ. Saf. 100:201-208. 10.1016/j.ecoenv.2013.11.00324287010
35
Tabatabai, M.A. and J.M. Bremner. 1970. Arylsulfatase activity of soils. Soil Sci. Soc. Am. J. 34:225-229. 10.2136/sssaj1970.03615995003400020016x
36
Talukder, A.S.M.H.M., C.A. Meisner, M.A.R. Sarkar, M.S. Islam, K.D. Sayre, J.M. Duxbury, and J.G. Lauren. 2012. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Ecotoxicol. Environ. Saf. 80:145-151. 10.1016/j.ecoenv.2012.02.02022425734
37
Tang, X., L. Li, C. Wu, M.I. Khan, M. Manzoor, L. Zou, and J. Shi. 2020. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers. Environ. Pollut. 264:114679. 10.1016/j.envpol.2020.11467932380397
38
Tejada, M. 2009. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate+diflufenican herbicides. Chemosphere 76:365-337. 10.1016/j.chemosphere.2009.03.04019376558
39
Tejada, M., I. Gomez, T. Hernandez, and C. Garcia. 2013. Influence of the activity of Allobophora molleri in microbial activity and metal availability of arsenic-polluted soils. Arch. Environ. Contam. Toxicol. 65:449-457. 10.1007/s00244-013-9914-423703122
40
Tu, S. and L.Q. Ma. 2003. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 50:243-251. 10.1016/S0098-8472(03)00040-6
41
Tyler, G., 1974. Heavy metal pollution and soil enzymatic activity. Plant Soil 41:303-311. 10.1007/BF00017258
42
Xian, Y., M. Wang, and W. Chen. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604-608. 10.1016/j.chemosphere.2014.12.06025585863
43
Xu, X., P. Wang, J. Zhang, C. Chen, Z. Wang, P.M. Kopittke, R. Kretzschmar, and F.J. Zhao. 2019. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ. Pollut. 251:952-960. 10.1016/j.envpol.2019.05.08631234262
44
Yeates, G.W., V.A. Orchard, T.W. Speir, J.L. Hunt, and M.C.C. Hermans. 1994. Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity. Biol. Fertil. Soils 18:200-208. 10.1007/BF00647667
45
Yi, P.H., S.G. Han, G. Selvakumar, S.E. Lee, D.H. Jung, and I.B. Lee. 2020. Analysis of soil nutrient balance, soil enzymatic activity and growth characteristics of facility-grown red pepper (Capsicum annuum L.) with incorporation of hairy vetch. Korean J. Soil Sci. Fert. 53:1-12. 10.7745/KJSSF.2020.53.1.001
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 55
  • No :4
  • Pages :511-521
  • Received Date : 2022-11-08
  • Revised Date : 2022-11-21
  • Accepted Date : 2022-11-21