All Issue

2021 Vol.54, Issue 4 Preview Page

Original research article

30 November 2021. pp. 486-503
Abstract
References
1
Ahuja, L.R., J.W. Naney, and R.D. Williams. 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc. Am. J. 49:1100-1105. 10.2136/sssaj1985.03615995004900050005x
2
Baghdadi, N., M. El Hajj, M. Zribi, I. Fayad. 2016. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9:1229-1243. 10.1109/JSTARS.2015.2464698
3
Blaney, H.F. and W.D. Criddle. 1962. Determining consumptive use and irrigation water requirement. Agric. Res. Serv. USDA Tech. Bull. 1275:1-59.
4
Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydraology Paper No. 3, Colorado State University, Fort Collins, USA.
5
Chen, S., X. Mao, D.A. Barry, and J. Yang. 2019. Model of crop growth, water flow, and solute transport in layered soil. Agric. Water Manage. 221:160-174. 10.1016/j.agwat.2019.04.031
6
Claverie, M., V. Demarez, B. Duchemin, O. Hagolle, D. Ducrot, C. Marais-Sicre, J.F. Dejoux, M. Huc, P. Keravec, P. Beziat, R. Fieuzal, E. Ceschia, and G. Dedieu. 2012. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 124:844-857. 10.1016/j.rse.2012.04.005
7
David, T.S., M.O. Henriques, C. Kurz-Besson, J. Nures, F. Valente, M. Vaz, J.S. Pereira, R. Sigwolf, M.M. Chaves, L.C. Gazarini, and J.S. David. 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: Surviving the summer drought. Tree Physiol. 27:793-803. 10.1093/treephys/27.6.79317331898
8
Duchemin, B., P. Maisongrande, G. Boulet, and I. Benhadj. 2008. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Modell. Software 23:876-892. 10.1016/j.envsoft.2007.10.003
9
Eom, K.C. 2015. Relative sensitivity analysis of the soil water characteristics curve. Korean J. Soil Sci. Fert. 48:712-723. 10.7745/KJSSF.2015.48.6.712
10
Eom, K.C., K.C. Song, K.S. Ryu, Y.K. Sonn, and S.E. Lee. 1995. Model equations to estimate the soil water characteristics curve using scaling factor. Korean J. Soil Sci. Fert. 28:227-232.
11
Eom, K.C., K.S. Ryu, and K.T. Um. 1988. Comparison of the measurement methods of soil water content by error analysis. Korean J. Soil Sci. Fert. 21:367-372.
12
Eom, K.C., L.Y. Kim, C.I. Im, Y.H. Park, and M.S, Park. 2020. Advanced analysis of climate data by trigonometric function, polar coordinate and scaling technique. J. Clim. Change Res. 11:529-538. 10.15531/KSCCR.2020.11.5.529
13
Fieuzal, R., B. Duchemin, L. Jarlan, M. Zribi, F. Baup, O. Merlin, O. Hagolle, and J. Garatuza-Payan. 2011. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrol. Earth Syst. Sci. 15:1117-1129. 10.5194/hess-15-1117-2011
14
Fredlund, D.G. and A. Xing. 1994. Equations for the soil-water characteristic curve. Can. Geotech. J. 31:521-532. 10.1139/t94-061
15
Freebairn, D.M., A. Ghahramani, J.B. Robinson, and D.J. McClymont. 2018. A tool for monitoring soil water using modelling, on-farm data, and mobile technology. Environ. Modell. Software 104:55-63. 10.1016/j.envsoft.2018.03.010
16
Frot, E., B. van Wesemael, A.S. Benet, and M.A. House. 2008. Water harvesting potential in function of hillslope characteristics: A case study from the Sierra de Gador (Almeria province, south-east Spain). J. Arid Environ. 72:1213-1231. 10.1016/j.jaridenv.2007.12.009
17
Fuamba, M., F. Branger, I. Braud, E. Batchabani, P. Sanzana, B. Sarrazin, and S. Jankowfsky. 2019. Value of distributed water level and soil moisture data in the evaluation of a distributed hydrological model: Application to the PUMMA model in the Mercier catchment (6.6 km2) in France. J. Hydrol. 569:753-770. 10.1016/j.jhydrol.2018.12.035
18
Goodman, L.A. 1960. On the exact variance of products. J. Am. Stat. Assoc. 55:708-713. 10.1080/01621459.1960.10483369
19
Gribovszki, Z., J. Szlagyi, and P. Kalicz. 2010. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation - A review. J. Hydrol. 385:371-383. 10.1016/j.jhydrol.2010.02.001
20
Hadria, R., B. Duchemin, L. Jarlan, G. Dedieu, F. Baup, S. Khabba, A. Olioso, and T. Letoan. 2010. Potentiality of optical and radar satellite data at high spatio-temporal resolutions for the monitoring of irrigated wheat crops in Morocco. Int. J. Appl. Earth Obs. Geoinf. 12:S32-S37. 10.1016/j.jag.2009.09.003
21
Han, D., P. Wang, K. Tansey, X. Zhou, S. Zhang, H. Tian, J. Zhang, and H. Li. 2020. Linking an agro-meteorological model and a water cloud model for estimating soil water content over wheat fields. Comput. Electron. Agric. 179:105833. 10.1016/j.compag.2020.105833
22
Irsyard, al M.I., A. Halog, and R. Nepal. 2019. Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors. Renewable Energy 130:536-546. 10.1016/j.renene.2018.06.082
23
Jing, Y. and J. Chen. 2011. Modelling of soil water movemtent and its application of citrus garden in hilly area of Jiangxi province. Procedia Eng. 18:145-150. 10.1016/j.proeng.2011.11.023
24
Kendall, M.G. and A. Stuart. 1963. The advanced theory of statistics, Vol. 1. p. 228-245. Charles Griffin and Co., Ltd., London.
25
Kosugi, K. 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 32:2697-2703. 10.1029/96WR01776
26
Kosugi, K. 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 63:270-277. 10.2136/sssaj1999.03615995006300020003x
27
Kosugi, K. and J.W. Hopmans. 1998. Scaling water retention curves for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 62:1496-1505. 10.2136/sssaj1998.03615995006200060004x
28
Li, C., H. Sun, X. Wu, and H. Han. 2019. Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model. Data in Brief 27:104740. 10.1016/j.dib.2019.10474031763397PMC6864309
29
Maihemuti, B., Z. Simayi, Y. Alifujiang, T. Aishan, A. Abliz, and G. Aierken. 2021. Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Global Ecol. Conserv. 25:e01408. 10.1016/j.gecco.2020.e01408
30
Mandel, J. 1964. The statistical analysis of experimental data. p. 58-77, 363-389. John Wiley & Sons, Inc., New York.
31
Meng, Q., Q. Xie, C. Wang, J. Ma, Y. Sun, and L. Zhang. 2016. A fusion approach of the improved Dubois model and best canopy water retrieval models to retrieve soil moisture through all maize growth stages from Radarsat-2 and Landsat-8 data. Environ. Earth Sci. 75:1377-1391. 10.1007/s12665-016-6182-4
32
Moriasi, D.N., J.G. Armold, M.W. Van Liew, M.W.R.L. Bingner, R.D. Harmel, and T.L. Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50:885-900. 10.13031/2013.23153
33
Moriasi, D.N., M.W. Gitau, N. Pai, and P. Daggupati. 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 58:1763-1785. 10.13031/trans.58.10715
34
Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol. 10:282-290. 10.1016/0022-1694(70)90255-6
35
Nruthya, K. and V.V. Srinivas. 2015. Evaluating methods to predict streamflow at ungauged sites using regional flow duration curves: A case study. Aquat. Procedia 4:641-648. 10.1016/j.aqpro.2015.02.083
36
Pedroso, D.M., D.S. Chao, and J.Z. Dong. 2009. The concept of reference curves for constitutive modelling in soil mechanics. Comput. Geotech. 34:149-165. 10.1016/j.compgeo.2008.01.009
37
Rattan, L. and K.S. Manoj. 2004. Principles of soil physics. p. 269-271. Marcel Dekker, Inc., New York ‧ Basel, USA.
38
Shein, E.V., A.V. Dembovetsky, and S.S. Panina. 2013. Modeling soil water movement under low head ponding and gravity infiltration using data determined with different methods. Procedia Environ. Sci. 19:553-557. 10.1016/j.proenv.2013.06.062
39
Sinclair, D.F. and J. Williams. 1979. Components of variance involved in estimating soil water content and water content change using a neutron moisture meter. Aust. J. Soil Res. 17:237-247. 10.1071/SR9790237
40
Terleev, V., A. Nikonorov, I. Togo, Y. Volkova, V. Garmanov, D. Shishov, V. Pavlova, N. Semenova, and W. Mirschel. 2016. Modelling the hysteretic water retention capacity of soil for reclamation research as a part of underground development. Procedia Eng. 165:1776-1783. 10.1016/j.proeng.2016.11.922
41
Vauclin, M., R. Haverkamp, and G. Vachaud. 1984. Error analysis in estimating soil water content from neutron probe measurements, 2. Spatial standpoint. Soil Sci. 137:141-148. 10.1097/00010694-198403000-00002
42
Wang, X.C. and J. Li. 2010. Evaluation of crop yield and soil water estimates using the EPIC model for the Loess Plateau of China. Math. Comput. Modell. 51:1390-1397. 10.1016/j.mcm.2009.10.030
43
Williams, J.R. and W.V. LaSeur. 1976. Water yield model using SCS curve numbers. J. Hydraul. Div. 102:12379. 10.1061/JYCEAJ.0004609
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :4
  • Pages :486-503
  • Received Date : 2021-10-05
  • Revised Date : 2021-10-20
  • Accepted Date : 2021-10-22