All Issue

2021 Vol.54, Issue 2 Preview Page

Article

May 2021. pp. 161-173
Abstract
References
1
Amaducci, S., M.T. Amaducci, R. Benati, and G. Venturi. 2000. Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind. Crops Prod. 11:179-186. 10.1016/S0926-6690(99)00063-1
2
APHA. 1998. Standard methods for the examination of water and wastewater, 20th edition. American Public Health Association, Washington, D.C.
3
Bourriaud, C., R.J. Robins, L. Martin, F. Kozlowski, E. Tenailleau, C. Cherbut, and C. Michel. 2005. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 99:201-212. 10.1111/j.1365-2672.2005.02605.x15960680
4
Boyle, W.C. 1976. Energy recovery from sanitary landfills a review. p. 119-138. In H.G. Schlegel and J. Barnea (eds.) Microbial energy conversion. Pergamon Press Oxford UK. 10.1016/B978-0-08-021791-8.50019-6
5
Carlsson, M., A. Lagerkvist, and F. Morgan-Sagastume. 2012. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Manag. 32(9):1634-1650. 10.1016/j.wasman.2012.04.01622633466
6
Fang, H.H. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82:87-93. 10.1016/S0960-8524(01)00110-9
7
Jean, H., E.A.L. Thomas, H. Zeina, S. Dominique, L. Nicolas, G.M. Richard, and L. Jean-Louis. 2016. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Manag. 50:275-282. 10.1016/j.wasman.2016.02.02826944865
8
Kawai, S., K. Ohnishi, Y. Okudaira, and M. Zhang. 2000. Manufacture of oriented fiberboard from kenaf bast fibers and its application to the composite panel. p. 144-148. In Proceedings of the Int. Kenaf Symp., Hiroshima, Japan.
9
Kim, J.A., Y.M. Yoon, and C.H. Kim. 2012. Effects of supplementation of mixed methanogens and rumen cellulolytic bacteria on biochemical methane potential. Korean J. Soil Sci. Fert. 45(4):515-523. 10.7745/KJSSF.2012.45.4.515
10
Lay, J.J., Y.Y. Li, and T. Noike. 1998. Mathematical model for methane production from landfill bioreactor. J. Environ. Eng. 124(8):730-736. 10.1061/(ASCE)0733-9372(1998)124:8(730)
11
Lee, J.H., T.B. Kim, K.S. Shin, and Y.M. Yoon. 2020. Biochemical methane potential analysis for anaerobic digestion of marine algae. J. Korea Org. Resour. Recycl. Assoc. 28(4):23-33.
12
McCarty, P.L. 1964. Anaerobic waste treatment fundamentals - Part Three: Toxic materials and their control. Public Works 95:91-94.
13
MOTIE (Ministry of Trade, Industry and Energy). 2017. Implementation plans for renewable 20 by 2030.
14
MOTIE (Ministry of Trade, Industry and Energy). 2020. The 9th basic plan for supply and demand of electric power.
15
Oh, S.Y. and Y.M. Yoon. 2016. Assesment of methane potential in hydro-thermal carbonization reaction of organic sludge using parallel first order kietics. Korean J. Environ. Agric. 35:128-136. 10.5338/KJEA.2016.35.2.13
16
Seller, T. and N.A. Reichert. 1999. Kenaf properties, processing, and products. Mississippi State University.
17
Shelton, D.R. and J. Tiedije. 1984. General method fordetermining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47:850-857. 10.1128/aem.47.4.850-857.19846721493PMC239775
18
Sorensen, A.H., M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: The influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl. Microbiol. Biotechnol. 34(6):823-827. 10.1007/BF00169358
19
Van Soest, P.J. and J.B. Robertson. 1985. Analysis of forage and fibrous foods. Cornell University.
20
VDI 4630. 2006. Fermentation of organic materials, characterisation of the substrate, sampling, collection of material data, fermentation test. VDI-Handbuch Energietechnik.
21
Xu, H., Y. Li, D.L. Hua, H. Mu, Y.X. Zhao, and G. Chen. 2019. Methane production from the anaerobic digestion of substrates from corn stover: Differences between the stem bark, stem pith, and leaves. Sci. Total Environ. 694:1-7. 10.1016/j.scitotenv.2019.13364131756805
22
Yi, Z., Z. Jia, F. Xu, and Y. Li. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42(1):35-53. 10.1016/j.pecs.2014.01.001
23
Yoo, J.S., C.H. Kim, and Y.M. Yoon. 2017. Biochemical methane potential analysis for anaerobic digestion of giant miscanthus (Miscanthus sacchariflorus). Korean J. Environ. Agric. 36(1):29-35. 10.5338/KJEA.2017.36.1.03
24
Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. Ichinose, S. Kaneko, and K. Fukud. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci., Biotechnol., Biochem. 72(3):805-810. 10.1271/bbb.7068918323635
25
Zhu, L., J.P. O’Dwyer, V.S. Chang, C.B. Granda, and M.T. Holtzapple. 2008. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99(9):3817-3828. 10.1016/j.biortech.2007.07.03317826088
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :2
  • Pages :161-173
  • Received Date :2021. 02. 24
  • Revised Date :2021. 05. 31
  • Accepted Date : 2021. 05. 31