All Issue

2021 Vol.54, Issue 3 Preview Page

Original research article

31 August 2021. pp. 276-288
Abstract
References
1
Abad, M., P. Noguera, and S. Bures. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 77:197-200. 10.1016/S0960-8524(00)00152-8
2
Baker, L. and D. Ellison. 2008. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma 144:212-224. 10.1016/j.geoderma.2007.11.016
3
Batjes, N.H. 1996. Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71:31-51. 10.1016/0016-7061(95)00089-5
4
Klute, A. 1986. Methods of soil analysis, Part 1: Physical and mineralogical methods. American Society of Agronomy, Madison, Wisconsin, United States.
5
Konyai, S., V. Sriboonlue, and V. Trelo-Ges. 2009. The effect of air entry values on hysteresis of water retention curve in saline soil. Am. J. Environ. Sci. 5:341-345. 10.3844/ajessp.2009.341.345
6
Maloupa, E., I. Mitsios, P.F. Martinez, and S. Bladenopoulou. 1992. Study of substrate use in Gerbera soilless culture grown in plastic greenhouses. Acta Hort. 323:139-144. 10.17660/ActaHortic.1993.323.12
7
Markoska, V., V. Spalevic, K. Lisichkov, K. Atkovska, and R. Gulaboski. 2018. Determination of water retention characteristics of perlite and peat. Agric. For. 64:113-126. 10.17707/AgricultForest.64.3.10
8
Minasny, B. and A.B. McBratney. 2002. The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 66:352-361. 10.2136/sssaj2002.1407a
9
Minasny, B., A.B. McBratney, and K.L. Bristow. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93:225-253. 10.1016/S0016-7061(99)00061-0
10
Monteiro, S.M., L.A.H. Terrones, and J.R.M. D’Almedia. 2008. Mechanical performance of coir fiber/polyester composites. Polym. Test. 27(5):591-595. 10.1016/j.polymertesting.2008.03.003
11
Moraes, S.O., P.L. Libardi, and D. Dourado Neto. 1993. Problemas metodológicos na obtenção da curva de retenção da água pelo solo. Sci. Agric. (Piracicaba, Braz.) 50:383-392. 10.1590/S0103-90161993000300010
12
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522. 10.1029/WR012i003p00513
13
Olivella, S. and A. Gens. 2000. Vapour transport in low permeability unsaturated soils with capillary effects. Transp. Porous Media 40:219-241. 10.1023/A:1006749505937
14
Pachepsky, Y.A. and W.J. Rawls. 2004. Development of pedotransfer functions in soil hydrology. p. 498. Amsterdam, Elsevier.
15
Pachepsky, Y.A., D. Timlin, and G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60:727-733. 10.2136/sssaj1996.03615995006000030007x
16
Perlite Institute. 2019. Water-holding capacity of perlite. https://hessperlite.com/PDFs/Perlite-Water-Holding-Capacity.pdf
17
Reka, A.A., B.L. Pavlovski, K. Lisichkov, A. Jashari, B. Boev, I. Boev, M. Lazarova, V. Eskizeybek, A. Oral, and P. Makreski. 2019. Chemical, mineralogical and structural features of native and expanded perlite from Macedonia. Geol. Croat. 72:215-221. 10.4154/gc.2019.18
18
Richards, L.Á. 1955. Retention and transnêission of water in soil. Yearbook of Agriculture. p. 144-145.
19
Romero, E. and J. Vaunat. 2000. Retention curves of deformable clays. p. 91-106. In A. Tarantino and C. Mancuso (eds.) Experimental evidence and theoretical approaches in unsaturated soils. Balkema, Rotterdam.
20
Samar, M. and S. Saxena. 2016. Study of chemical and physical properties of perlite and its application in india. Int. J. Sci. Tech. Manag. 5:70-80.
21
Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62:847-855. 10.2136/sssaj1998.03615995006200040001x
22
van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. 10.2136/sssaj1980.03615995004400050002x
23
van Genuchten, M.Th., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065. Washington, U.S Environmental Protection Agency. p. 85.
24
Vereecken, H., J. Diels, J. van Orshoven, J. Feyen, and J. Bouma. 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56:1371-1378. 10.2136/sssaj1992.03615995005600050007x
25
Wösten, J.H.M., P.A. Finke, and M.J.W. Jansen. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227-237. 10.1016/0016-7061(94)00079-P
26
Yeager, T., C. Gilliam, T. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 2000. Best management practices guide for producing container-grown plants. Southern Nursery Assn, Atlanta, GA.
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :3
  • Pages :276-288
  • Received Date : 2021-05-11
  • Revised Date : 2021-05-31
  • Accepted Date : 2021-05-31