Original research article
Akinwande MO, Dikko HG, Samson A. 2015. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5:754-767. https://doi.org/10.4236/ojs.2015.57075
10.4236/ojs.2015.57075Allen Jr LH, Albrecht SL, Colón-Guasp W, Covell SA, Baker JT, Pan D, Boote KJ. 2003. Methane emissions of rice increased by elevated carbon dioxide and temperature. J. Environ. Qual. 32:1978-1991. https://doi.org/10.2134/jeq2003.1978
10.2134/jeq2003.197814674519An J, Lee Y, Song J, Kim SY. 2024. Effects of Bacillus velezensis strain GH1-13 seed-soaking inoculation on rice productivity and greenhouse gas (CH4 and N2O) emissions in a paddy soil during cultivation: A pot experiment. Korean J. Soil Sci. Fert. 57:63-72. https://doi.org/10.7745/KJSSF.2024.57.1.063
10.7745/KJSSF.2024.57.1.063Baek N, Park SW, Shin ES, Heo SB, Park HJ, Choi WJ. 2023. Changes in methane emission of Korean rice production systems for the last two decades and suggestions for methane mitigation. Korean J. Soil Sci. Fert. 56:199-208. https://doi.org/10.7745/KJSSF.2023.56.2.199
10.7745/KJSSF.2023.56.2.199Busman NA, Melling L, Goh KJ, Imran Y, Sangok FE, Watanabe A. 2023. Soil CO2 and CH4 fluxes from different forest types in tropical peat swamp forest. Sci. Total Environ. 858:159973. https://doi.org/10.1016/j.scitotenv.2022.159973
10.1016/j.scitotenv.2022.15997336347298Cho HS, Seo MC, Kim JH, Sang WG, Shin P, Lee GH. 2016. Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil. Korean J. Soil Sci. Fert. 49:564-571. https://doi.org/10.7745/KJSSF.2016.49.5.564
10.7745/KJSSF.2016.49.5.564Conrad, R. 2007. Microbial Ecology of Methanogens and Methanotrophs. Adv. Agron. 96:1-63. https://doi.org/10.1016/S0065-2113(07)96005-8
10.1016/S0065-2113(07)96005-8Gwon HS, Choi EJ, Lee SI, Lee HS, Park HR, Lee JM, Jin JH. 2022. Greenhouse Gases Emission from Rice Paddy under Different Tillage Intensity during Fallow Season. Korean J. Soil Sci. Fert. 55:464-474. https://doi.org/10.7745/KJSSF.2022.55.4.464
10.7745/KJSSF.2022.55.4.464IPCC (Intergovernmental Panel on Climate Change). 2014. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Geneva, Switzerland.
Jang EB, Jeong HC, Gwon HS, Lee HS, Park HR, Lee JM, Oh TK. 2023. Effect of Water Management on Greenhouse Gas Emissions from Rice Paddies Using a Slow-release Fertilizer. Korean J. Environ. Agric. 42:112-120. https://doi.org/10.5338/KJEA.2023.42.2.14
10.5338/KJEA.2023.42.2.14Jeong HK, Jeong SH, Han JH. 2022. Identifying factors of willingness to participate in greenhouse gas reduction projects in the agricultural sector. Korean J. Agric. Sci. 49:737-747. https://doi.org/10.7744/kjoas.20220067
10.7744/kjoas.20220067Jin JH, Jeong HC, Lee SI, Lee HS, Park HR, Yu YS, Lee JM, Lee YH, Gown HS. 2023. Life Cycle Assessment of Greenhouse Gas Emission of Rice Cultivation under Minimum Tillage in the Gimje, South Korea. Korean J. Soil Sci. Fert. 56:300-312. https://doi.org/10.7745/KJSSF.2022.56.4.300
10.7745/KJSSF.2023.56.4.300Kang YG, Lee JH, Lee JY, Oh TK. 2023a. The effects of different management strategies on growth and quality of rice (Oryza sativa L.). Korean J. Agric. Sci. 50:75-86. https://doi.org/10.7744/kjoas.20230004
10.7744/kjoas.20230004Kang YG, Lee JY, Cho G, Yun Y, Oh TK. 2024. Synergy effect of silicate fertilizer and iron slag: A sustainable approach for mitigating methane emission in rice farming. Sci. Total Environ. 935:173392. https://doi.org/10.1016/j.scitotenv.2024.173392
10.1016/j.scitotenv.2024.17339238788952Kang YG, Lee JY, Kim JH, Oh, TK. 2023b. Quantifying soil organic matter for sustainable agricultural land management with soil color and machine learning technique. Agron. J. 2023:1-8. https://doi.org/10.1002/agj2.21525
10.1002/agj2.21525Kang YG, Sonn YK, Lee JH, Chun JH, Lee CH, Oh TK. 2022. Prediction of Soil Carbon Contents Using Smartphone Images and Multiple Regression Analysis. Korean J. Soil Sci. Fert. 55:228-238. https://doi.org/10.7745/KJSSF.2022.55.3.228
10.7745/KJSSF.2022.55.3.228Kim JH, Kang YG, Lee JY, Kim JH, Choi JW, Oh, TK. 2024. Influences of silicate fertilizers containing different rates of iron slag on CH4 emission and rice (Oryza sativa L.) growth. Korean J. Agric. Sci. 51:227-238. https://doi.org/10.7744/kjoas.510213
10.7744/kjoas.510213Kim SY, Gutierrez J, Kim PJ. 2013. Effect of seedling transplanting date on methane emission from rice paddy soil during cultivation. Soil Sci. Plant Nutr. 59:278-288. https://doi.org/10.1080/00380768.2012.763144
10.1080/00380768.2012.763144Kim T, Lee DH, Kang SW, Cho SH, Kim KC. 2022. Estimation of tomato maturity as a continuous index using deep neural networks. Korean J. Agric. Sci. 49:785-793. https://doi.org/10.7744/kjoas.20220072
10.7744/kjoas.20220072Kim W, Lee Y, Oh TK, Sung J. 2022. Water/nutrient use efficiency and effect of fertigation: a review. Korean J. Agric. Sci. 49:919-926. https://doi.org/10.7744/kjoas.2022083
10.7744/kjoas.20220083Lee JH, Lee JY, Kang YG, Kim JH, Oh TK. 2023. Evaluating methane emissions from rice paddies: A study on the cultivar and transplanting date. Sci. Total Environ. 902:166174. https://doi.org/10.1016/j.scitotenv.2023.166174
10.1016/j.scitotenv.2023.16617437562609Lim H, An H, Choi G, Lee J, Do J. 2022. Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: cast study of reservoirs in Nonsan City. Korean J. Agric. Sci. 49:193-202. https://doi.org/10.7744/kjoas.20220016
10.7744/kjoas.20220016McBratney AB, Mendoca Santos ML, Minasny B. 2003. On digital soil mapping. Gerderma 117:3-52. https://doi.org/10.1016/S0016-7061(03)00223-4
10.1016/S0016-7061(03)00223-4Nikolaisen M, Hillier J, Smith P, Nayak D. 2023. Modelling CH4 emission from rice ecosystem: A comparison between existing empirical models. Front. Agron. https://doi.org/10.3389/fagro.2022.1058649
10.3389/fagro.2022.1058649Park JH, Park SJ, Kim JS, Seo DH, Park SD, Kim JH. 2015. Evaluation of Methane Emissions with Water Regime before the Cultivation Period in Paddy Fields. Korean J. Soil Sci. Fert. 48:271-277. https://doi.org/10.7745/KJSSF.2015.48.4.271
10.7745/KJSSF.2015.48.4.271Qin X, Li Y, Wang H, Li J, Wan Y, Gao Q, Liao Y, Fan M. 2015. Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China. J. Integr. Environ. Sci. 12:47-66. https://doi.org/10.1080/1943815X.2015.1118388
10.1080/1943815X.2015.1118388RDA (Rural Development Administration). 2022. Fertilizer Recommendation for crops (5th ed.). Rural Development Administration, Jeonju, Korea.
RDA (Rural Development Administration). 2024. Rice machine transplanter. https://www.rda.go.kr/middlePopOpenPopNongsaroDBView.do?no=1025&sj=%EB%B2%BC%20%EA%B8%B0%EA%B3%84%20%EB%AA%A8%EB%82%B4%EA%B8%B0. (accessed on Nov. 21, 2024)
Rolston DE. 1986. Gas flux. Methods of soil analysis: Part 1. Physical and mineralogical methods. 5:1103-1119. https://doi.org/10.2136/sssabookser5.1.2ed.c47
10.2136/sssabookser5.1.2ed.c47Shin ES, Baek N, Park SW, Pia HI, Park HJ, Kim HY, Choi WJ. 2024. Methane emission from soil surface during rice growth season under different temperature, fertilization, and rice straw input conditions. Korean J. Soil Sci. Fert. 57:23-34. https://doi.org/10.7745/KJSSF.2024.57.1.023
10.7745/KJSSF.2024.57.1.023Singh S, Singh JS, Kashyap AK. 1999. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 31:1219-1228. https://doi.org/10.1016/S0038-0717(99)00027-9
10.1016/S0038-0717(99)00027-9Song HY, Cho BH, Kim YH, Kim KC. 2022. Development of a classification model for tomato maturity using hyperspectral imagery. Korean J. Agric. Sci. 49:129-136. https://doi.org/10.7744/kjoas.20220010
10.7744/kjoas.20220010Sun H, Zhou S, Zhang J, Zhang X, Wang C. 2020. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 27:14780-14789. https://doi.org/10.1007/s11356-020-07951-w
10.1007/s11356-020-07951-w32052337Wang J, Ciais P, Smith P, Yan X, Kuzyakov Y, Liu S, Li T, Zou J. 2023. The role of rice cultivation in changes in atmospheric methane concentration and the Global Methane Pledge. Glob. Change Biol. 29:2776-2789. https://doi.org/10.1111/gcb.16631
10.1111/gcb.1663136752684Wang L, Zhong D, Chen X, Niu Z, Cao Q. 2024. Impact of climate change on rice growth and yield in China: Analysis based on climate year type. Geogr. Sustain. 5:548-560. https://doi.org/10.1016/j.geosus.2024.06.006
10.1016/j.geosus.2024.06.006Wang Y, Hu Z, He S, Jing Q, Shen L, Wu Z, Huang W, Lu G, Cao R, Zheng K, et al. 2023. Linear relationship between CH4 fluxes and atmospheric CO2 concentration levels controlled by rice biomass and soil methanogenic communities. Nutr. Cycling Agroecosyst. 127:247-263. https://doi.org/10.1007/s10705-023-10299-5
10.1007/s10705-023-10299-5Xu S, Jaffé PR, Mauzerall DL. 2007. A process-based model for methane emission from flooded rice paddy systems. Ecol. Model. 205:475-491. https://doi.org/10.1016/j.ecolmodel.2007.03.014
10.1016/j.ecolmodel.2007.03.014Yang W, Park JH, Choi JS, Kang S, Kim S. 2019. Yield characteristics and related agronomic traits affected by the transplanting date in early maturing varietyes of rice in the central plain area of Korea. Korean J. Crop Sci. 64, 165-175. https://doi.org/10.7740/kjcs.2019.64.3.165
Yun Y, Kim G, Cho G, Yun Y. 2023. Effect of Transplanting Date on Agronomic and Grain Quality Traits Using Early-Maturing Rice Varieties. Agron. 13:1195. https://doi.org/10.3390/agronomy13051195
10.3390/agronomy13051195Zhang W, Sheng R, Zhang M, Xiong G, Hou H, Li S, Wei W. 2018. Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil. Agric. Ecosyst. Environ. 258:121-128. https://doi.org/10.1016/j.agee.2018.02.018
10.1016/j.agee.2018.02.018Zhou H, Tao F, Chen Y, Yin L, Li Y, Wang Y, Su C. 2024. Paddy rice methane emissions, controlling factors, and mitigation potentials across Monsoon Asia. Sci. Total Environ. 935:173441. https://doi.org/10.1016/j.scitotenv.2024.173441
10.1016/j.scitotenv.2024.17344138782289- Publisher :Korean Society of Soil Science and Fertilizer
- Publisher(Ko) :한국토양비료학회
- Journal Title :Korean Journal of Soil Science and Fertilizer
- Journal Title(Ko) :한국토양비료학회 학회지
- Volume : 57
- No :4
- Pages :331-343
- Received Date : 2024-09-23
- Revised Date : 2024-11-22
- Accepted Date : 2024-11-22
- DOI :https://doi.org/10.7745/KJSSF.2024.57.4.331