Opinion
Bai X, Zhang S, Shao J, Chen A, Jiang J, Chen A, Luo S. 2022. Exploring the negative effects of biochars on the germination, growth, and antioxidant system of rice and corn. J. Environ. Chem. Eng. 10:107398. https://doi.org/10.1016/j.jece.2022.107398
10.1016/j.jece.2022.107398Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönning N, Estavillo JM, Fuertes-Mendizábal, T, Sigua G, Spokas K, Ippolito JA, Novak J. 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 651:2354-2364. https://doi.org/10.1016/j.scitotenv.2018.10.060
10.1016/j.scitotenv.2018.10.06030336425Campion L, Bekchanova M, Malina R, Kuppens T. 2023. The costs and benefits of biochar production and use: A systematic review. J. Clean. Prod. 408:137138. Https://doi.org/10.1016/j.clepro.2023.137138
10.1016/j.jclepro.2023.137138Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA. 2014. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 191:5-16. https://doi.org/10.1016/j.agee.2013.10.009
10.1016/j.agee.2013.10.009Chen D, Liu X, Bian R, Cheng K, Zhang X, Zheng J, Joseph S, Crowley D, Pan G, Li L. 2018. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis. J. Environ. Manage. 222:76-85. https://doi.org/10.1016/j.jenvm an.2018.05.004
10.1016/j.jenvman.2018.05.00429804035Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W. 2013. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J. Soils Sediments 13:1450-1460. https://doi.org/10.1007/s11368-013-0732-0
10.1007/s11368-013-0732-0Han KH, Yun SI, Kwak JH, Lee SI. 2023. A review on international carbon credit certification methodologies for biochar as a soil amendment. Korean J. Soil Sci. Fert. 56:572-594. https://doi.org/10.7745/KJSSF.2023.56.4.572
10.7745/KJSSF.2023.56.4.572Han KH, Yun SI, Choi DH, Lee SI. 2024. Net CO2 removal of rice husk biochar as soil amendment depending on energy reuse in the production stage. Korean J. Soil Sci. Fert. 57:130-139. https://doi.org/10.7745/KJSSF.2024.57.2.130
10.7745/KJSSF.2024.57.2.130Han X, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies JE, Wu W. 2016. Mitigating methane emission from paddy soil with rice straw biochar amendment under projected climate change. Sci. Rep. 6:24731. https://doi.org/10.1038/srep24731
10.1038/srep2473127090814PMC4835783Lee JM, Jeong HC, Gwon HS, Lee HS, Park HR, Kim GS, Park DG, Lee SI. 2023. Effects of biochar on methane emissions and crop yields in East Asian paddy fields: A regional scale meta-analysis. Sustainability 15:9200. https://doi.org/10.3390/su15129200
10.3390/su15129200Lee SI, Park HJ, Jeong YJ, Seo BS, Kwak JH, Yang HI, Xu X, Tang S, Cheng W, Lim SS, Choi WJ. 2021. Biochar-induced reduction of N2O emission form East Asian soils under aerobic conditions: Review and data analysis. Environ. Pollut. 291:118154. https://doi.org/10.1016/j.envpol.2021.118154
10.1016/j.envpol.2021.11815434537599Nan Q, Wang C, Wang H, Yi Q, Wu W. 2020. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 746:141351. https://doi.org/10.1016/j.scitotenv.2020.141351
10.1016/j.scitotenv.2020.14135132768791Nan Q, Xin L, Qin Y, Waqas M, Wu W. 2021. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: a review. Biochar 3:125-134. https://doi.org/10.1007/ s42773-021-00096-0
10.1007/s42773-021-00096-0Novair SB, Cheraghi M, Faramarzi F, Lajayer BA, Senapathi V, Astatkie T, Price GW. 2023. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotox. Environ. Safe. 263:115228. https://doi.org/10.1016/j.ecoenv.2023.115228
10.1016/j.ecoenv.2023.11522837423198Pia HI, Baek N, Park SW, Shin ES, Lee SI, Kim HY, Tang S, Cheng W, Kwak JH, Park HJ, Choi WJ. 2024. Luxury application of biochar does not enhance rice yield and methane mitigation: a review and data analysis. J. Soils Sediments. 24:2652-2668. https://doi.org.10.1007/s11368-024-03830-w
10.1007/s11368-024-03830-wQuilliam RS, Rangecroft S, Emmett BA, Deluca TH, Jones DL. 2013. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Glob. Change Biol. Bioenergy 5:96-103. https://doi.org/10.1111/gcbb.12007
10.1111/gcbb.12007Sadasivam BY, Reddy KR. 2015. Adsorption and transport of methane in biochars derived from waste wood. Waste Manage. 43:218-229. https://doi.org/10.1016/j.wasman.2015.04.025
10.1016/j.wasman.2015.04.02526005190Spokas KA, Baker JM, Reicosky DC. 2010. Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443-452. https://doi.org/10.1007/s11104- 010-0359-5
10.1007/s11104-010-0359-5Wang C, Shen J, Liu J, Qin H, Yuan Q, Fan F, Hu Y, Wang J, Wei W, Li Y, Wu J. 2019a. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 135:251-263. https://doi. org/10.1016/j.soilbio.2019.05.012
10.1016/j.soilbio.2019.05.012Wang J, Odinga ES, Zhang W, Zhou X, Yang B, Waigi MG, Gao Y. 2019b. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environ. Int. 130:104899. https://doi.org/10.1016/j.envint.2019.06.009
10.1016/j.envint.2019.06.00931203030Yun JJ, Lee DW, Shim JH, Jeon SH, Lee YH, Kwon SI, Park JH, Kang SW, Choi JS, Kim SH. 2023. Evaluation of crop growth and soil chemical properties in cadmium contaminated soil using biochar derived from rendered animal carcass residues. Korean J. Soil Sci. Fert. 56:533-543. https://doi.org/10.7745/KJSSF.2023.56.4.533
10.7745/KJSSF.2023.56.4.533Zhang X, Xia J, Pu J, Cai C, Tyson GW, Yuan Z, Hu S. 2019a. Biochar-mediated anaerobic oxidation of methane. Environ. Sci. Technol. 53:6660-6668. https://doi.org/10.1021/acs.est.9b01345
10.1021/acs.est.9b0134531099557Zhang Y, Xu X, Zhang P, Zhao L, Qiu H, Cao X. 2019b. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. Chemosphere 232:273-280. https://doi.org/10.1016/j.chemosphere.2019.05.225
10.1016/j.chemosphere.2019.05.22531154188Zhao Y, Zhao L, Mei Y, Li F, Cao X. 2018. Release of nutrients and heavy metals from biochar-amended soil under environmentally relevant conditions. Environ. Sci. Pollut. Res. 25:2517-2527. https://doi.org/10.1007/s11356-017-0668-9
10.1007/s11356-017-0668-929127636- Publisher :Korean Society of Soil Science and Fertilizer
- Publisher(Ko) :한국토양비료학회
- Journal Title :Korean Journal of Soil Science and Fertilizer
- Journal Title(Ko) :한국토양비료학회 학회지
- Volume : 57
- No :3
- Pages :238-244
- Received Date : 2024-07-17
- Revised Date : 2024-08-06
- Accepted Date : 2024-08-16
- DOI :https://doi.org/10.7745/KJSSF.2024.57.3.238