All Issue

2023 Vol.56, Issue 2 Preview Page

Original research article

31 May 2023. pp. 150-161
Abstract
References
1
Antoniadis, V., S.M. Shaheen, E. Levozou, M. Shahid, N.K. Niazi, M. Vithanage, Y.S. Ok, N. Bolan, and J. Rinklebe. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Environ. Int. 127:819-847. 10.1016/j.envint.2019.03.03931051325
2
Burton, E.D., S.G. Johnston, and B.D. Kocar. 2014. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ. Sci. Technol. 48(23):13660-13667. 10.1021/es503963k25346449
3
Burton, E.D., S.G. Johnston, P. Kraal, R.T. Bush, and S. Claff. 2013. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environ. Sci. Technol. 47(5):2221-2229. 10.1021/es303867t23373718
4
Cao, X., L.Q. Ma, and A. Shiralipour. 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 126(2):157-167. 10.1016/S0269-7491(03)00208-212927487
5
Choi, H.C., Y.J. Yoon, B.Y. Lee, and S.I. Choi. 2020. The dose effect of stabilizing agent on stabilization of heavy metals in soil. J. Soil Groundwater Environ. 25(4):7-13.
6
Coelho, D.G., C.S. Marinato, L.P. de Matos, H.M. de Andrade, V.M. da Silva, P.H. Santos-Neves, S.C. Araújo, and J.A. Oliveira. 2020. Is arsenite more toxic than arsenate in plants?. Ecotoxicology 29:196-202. 10.1007/s10646-019-02152-931982987
7
DIN (Deutsches Institut für Normung). 1995. Soil quality - Extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag, Berlin.
8
Eary, L.E. 1992. The solubility of amorphous As2S3 from 25 to 90°C. Geochim. Cosmochim. Acta 56(6):2267-2280. 10.1016/0016-7037(92)90188-O
9
Fernandes, L., G.N. Nayak, D. Ilangovan, and D.V. Borole. 2011. Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuarine, Coastal Shelf Sci. 91(3):388-399. 10.1016/j.ecss.2010.11.002
10
Hamid, Y., L. Tang, X. Wang, B. Hussain, M. Yaseen, M.Z. Aziz, and X. Yang. 2018. Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Sci. Rep. 8(1):17839. 10.1038/s41598-018-35881-830546027PMC6292881
11
Han, H.J., M.S. Ko, J.I. Ko, and J.U. Lee. 2020. Study on soil extraction methods for contamination assessment of heavy metals in soil. J. Korea Soc. Miner. Energy Resour. Eng. 57(5):471-482. 10.32390/ksmer.2020.57.5.471
12
Hartley, W., R. Edwards, and N.W. Lepp. 2004. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut. 131(3):495-504. 10.1016/j.envpol.2004.02.01715261413
13
Hashimoto, Y. and Y. Kanke. 2018. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations. Environ. Pollut. 238:617-623. 10.1016/j.envpol.2018.03.03929609173
14
IARC (International Agency for Research on Cancer). 2004. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr. Eval. Carcinog. Risks Hum. 84:1-477.
15
Jiang, W., Q. Hou, Z. Yang, C. Zhong, G. Zheng, Z. Yang, and J. Li. 2014. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ. Pollut. 188:159-165. 10.1016/j.envpol.2014.02.01424598788
16
Jung, H.I., J. Lee, M.J. Chae, M.S. Kong, C.H. Lee, S.S. Kang, and Y.H. Kim. 2017. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environ. Monit. Assess. 189:638. 10.1007/s10661-017-6350-329147882PMC5691118
17
Jung, H.I., M.J. Chae, T.J. Lee, J.H. Yoon, M.S. Kim, S. Jeon, and H.S. Kim. 2021. Soil nutrient and rice (Oryza sativa L.) growth characteristics under different arsenic contamination levels. Korean J. Soil Sci. Fert. 54(4):601-609. 10.7745/KJSSF.2021.54.4.601
18
Kicińska, A., R. Pomykała, and M. Izquierdo-Diaz. 2022. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 73(1):e13203. 10.1111/ejss.13203
19
Kim, H., M. Lee, H.S. Kim, and K.R. Kim. 2019. Exploration of heavy metal(loid)s immobilizing agents available for agricultural lands and their combination effects. Korean J. Soil Sci. Fert. 52(3):297-306.
20
Kim, M.S., H.G. Min, S.H. Lee, and J.G. Kim. 2020. Effects of amendments on heavy metal uptake by leafy, root, fruit vegetables in alkali upland soil. Ecol. Resilient Infrastruct. 7(1):63-71.
21
Kim, S.J., S.J. Oh, S.C. Kim, and S.S. Lee. 2018. Efficiency and longevity of in-situ stabilization methods in heavy metal contaminated arable soils. Korean J. Environ. Agric. 37(3):179-188. 10.5338/KJEA.2018.37.3.31
22
Koh, M.K., S. Suratman, and N.M. Tahir. 2015. Dissolved and suspended particulate metals in Setiu River basin, Terengganu, Malaysia. Sains Malays. 44(7):957-964. 10.17576/jsm-2015-4407-06
23
Li, T., J. Li, X. Zhan, X. Wang, B. He, F. Cao, C. Liao, Y. Yu, Z. Zhang, J. Zhang, B. Li, J. Chen, H. Li, Z. Zhu, Y. Wei, and J. Hu. 2022. Application of exogenous iron alters the microbial community structure and reduces the accumulation of cadmium and arsenic in rice (Oryza sativa L.). Nanomaterials 12(8):1311. 10.3390/nano1208131135458019PMC9028164
24
ME. 2021. Status of soil pollution: Soil pollution survey result_Pollution level by pollution source. Ministry of Environment, Sejong, Korea.
25
ME. 2022. Soil environment conservation act: Soil pollution concern level. Ministry of Environment, Sejong, Korea.
26
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15(12):1409-1416. 10.1080/00103628409367568
27
Moore, T.J., C.M. Rightmire, and R.K. Vempati. 2000. Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution. Soil Sediment Contam. 9(4):375-405. 10.1080/10588330091134310
28
Moreno-Jiménez, E., E. Esteban, and J.M. Peñalosa. 2012. The fate of arsenic in soil-plant systems. Rev. Environ. Contam. Toxicol. 215:1-37. 10.1007/978-1-4614-1463-6_122057929
29
NIER. 2022. Soil contamination process test criteria. National Institute of Environmental Research, Incheon, Korea.
30
O’Day, P.A., D. Vlassopoulos, R. Root, and N. Rivera. 2004. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA. 101(38):13703-13708. 10.1073/pnas.040277510115356340PMC518762
31
Oh, S.J., S.C. Kim, R.Y. Kim, Y.S. Ok, H.S. Yun, S.M. Oh, J.S. Lee, and J.E. Yang. 2012. Change of bioavailability in heavy metal contaminated soil by chemical amendment. Korean J. Soil Sci. Fert. 45(6):973-982. 10.7745/KJSSF.2012.45.6.973
32
Ray, I., D. Mridha, J. Sarkar, M. Joardar, A. Das, N.R. Chowdhury, A. De, K. Acharya, and T. Roychowdhury. 2022. Application of potassium humate to reduce arsenic bioavailability and toxicity in rice plants (Oryza sativa L.) during its course of germination and seedling growth. Environ. Pollut. 313:120066. 10.1016/j.envpol.2022.12006636067973
33
RDA. 2012. Analysis standard for research in agricultural science and technology. Rural Development Administration, Suwon, Korea.
34
Rickard, D. and G.W. Luther III. 2006. Metal sulfide complexes and clusters. Rev. Mineral Geochem. 61(1):421-504. 10.2138/rmg.2006.61.8
35
Simón, M., F. Martín, I. García, P. Bouza, C. Dorronsoro, and J. Aguilar. 2005. Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environ Pollut. 135(1):65-72. 10.1016/j.envpol.2004.10.01315701393
36
Statistics Korea. 2022. 「Agricultural Area Survey」, Farmed area by rice field nationwide (by province). Statistics Korea, Daejeon, Korea.
37
Tandy, S., N. Meier, and R. Schulin. 2017. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J. Hazard. Mater. 324:617-625. 10.1016/j.jhazmat.2016.11.03427863798
38
Xu, X., P. Wang, J. Zhang, C. Chen, Z. Wang, P.M. Kopittke, R. Kretzschmar, and F.J. Zhao. 2019. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ. Pollut. 251:952-960. 10.1016/j.envpol.2019.05.08631234262
39
Yokoyama, Y., K. Tanaka, and Y. Takahashi. 2012. Differences in the immobilization of arsenite and arsenate by calcite. Geochim. Cosmochim. Acta 91:202-219. 10.1016/j.gca.2012.05.022
40
Yoon, J.H., Y.N. Kim, D.B. Lee, K.R. Kim, W.I. Kim, and K.H. Kim. 2017. Identification of a proper phytoavailable arsenic extraction method associated with arsenic concentration in edible part of three crops in soils near abandoned mining areas. Korean J. Soil Sci. Fert. 50(6):497-508.
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :2
  • Pages :150-161
  • Received Date : 2023-05-15
  • Revised Date : 2023-05-30
  • Accepted Date : 2023-05-30