Original research article
An J, Lee Y, Lee J, Song J, Kim SY. 2024. Effects of Bacillus velezensis strain GH1-13 seed-soaking inoculation on rice productivity and greenhouse gas (CH4 and N2O) emissions in a paddy soil during cultivation: A pot experiment. Korean J. Soil Sci. Fert. 57:63-72. https://doi.org/10.7745/KJSSF.2024.57.1.063
10.7745/KJSSF.2024.57.1.063Avrahami S, Liesack W, Conrad R. 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5:691-705. https://doi.org/10.1046/j.1462-2920.2003.00457.x
10.1046/j.1462-2920.2003.00457.x12871236Bahram M, Espenberg M, Pärn J, Lehtovirta-Morley L, Anslan S, Kasak K, Kõljalg U, Liira J, Maddison M, Moora M, et al. 2022. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13:1430. https://doi.org/10.1038/s41467-022-29161-3
10.1038/s41467-022-29161-335301304PMC8931052Bateman EJ, Baggs EM. 2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41:379-388. https://doi.org/10.1007/s00374-005-0858-3
10.1007/s00374-005-0858-3Bremner JM. 1997. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 49:7-16. https://doi.org/10.1023/A:1009798022569
10.1023/A:1009798022569Cai Z, Gao S, Hendratna A, Duan Y, Xu M, Hanson BD. 2016. Key factors, soil nitrogen processes, and nitrite accumulation affecting nitrous oxide emissions. Soil Sci. Soc. Am. J. 80:1560. https://doi.org/10.2136/sssaj2016.03.0089
10.2136/sssaj2016.03.0089Che J, Zhao XQ, Zhou X, Jia ZJ, Shen RF. 2014. High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Appl. Soil Ecol. 85:21-29. https://doi.org/10.1016/j.apsoil.2014.09.003
10.1016/j.apsoil.2014.09.003Chèneby D, Hartmann A, Hénault C, Topp C, Germon JC. 1998. Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol. Fertil. Soils 28:19-26. https://doi.org/10.1007/s003740050458
10.1007/s003740050458Fang C, Moncrieff JB. 2001. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33:155-165. https://doi.org/10.1016/S0038-0717(00)00125-5
10.1016/S0038-0717(00)00125-5Fidel RB, Laird DA, Parkin TB. 2019. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst. 3:8. https://doi.org/10.3390/soilsystems3010008
10.3390/soilsystems3010008Gee GW, Bauder JW. 1986. Particle-size analysis. pp. 383-411. In Klute A (Ed.) Methods of soil analysis, Part1. Physical and mineralogical methods (2nd ed.). American Society of Agronomy, Madison, WI, USA.
10.2136/sssabookser5.1.2ed.c15Goodroad LL, Keeney DR. 1984. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol. Biochem. 16:39-43. https://doi.org/10.1016/0038-0717(84)90123-8
10.1016/0038-0717(84)90123-8IPCC (Intergovernmental Panel on Climate Change). 2021. IPCC Sixth Assessment Report Working Group 1: The Physical Science Basis, IPCC, Geneva, Switzerland.
Jin JH, Jeong HC, Lee SI, Lee HS, Park HR, Yu YS, Lee JM, Lee YH, Gown HS. 2023. Life cycle assessment of greenhouse gas emission of rice cultivation under minimum tillage in the Gimje, South Korea. Korean J. Soil Sci. Fert. 56:300-312. https://doi.org/10.7745/KJSSF.2023.56.4.300
10.7745/KJSSF.2023.56.4.300Keeney DR, Nelson DW. 1982. Nitrogen-inorganic forms. pp. 643-698. In Page AL (Ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed.). Soil Science Society of America, Madison, WI, USA.
10.2134/agronmonogr9.2.2ed.c33Lee JM, Park DG, Kang SS, Choi EJ, Gwon HS, Lee HS, Lee SI. 2021. Greenhouse gas emissions according to application of biochar by soil type in the closed chamber. Korean J. Soil Sci. Fert. 54:451-466. https://doi.org/10.7745/KJSSF.2021.54.4.451
10.7745/KJSSF.2021.54.4.451Maag M, Vinther FP. 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 2:5-14. https://doi.org/10.1016/0929-1393(96)00106-0
10.1016/0929-1393(96)00106-0Maslov MN, Maslova OA. 2022. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. CATENA 210:105922. https://doi.org/10.1016/j.catena.2021.105922
10.1016/j.catena.2021.105922Nie S, Zhu GB, Singh B, Zhu YG. 2019. Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective. Environ. Pollut. 244:127-134. https://doi.org/10.1016/j.envpol.2018.10.050
10.1016/j.envpol.2018.10.05030321707NOAA (National Oceanic and Atmospheric Administration) Global Monitoring Laboratory. 2024. Trends in atmospheric nitrous oxide (N2O). https://gml.noaa.gov/ccgg/trends_n2o/ (acceseed on July. 19, 2024).
Norstadt FA, Porter LK. 1984. Soil gases and temperatures: a beef cattle feedlot compared to alfalfa. Soil Sci. Soc. Am. J. 48:783-789. https://doi.org/10.2136/sssaj1984.03615995004800040017x
10.2136/sssaj1984.03615995004800040017xParada CB, Long A, Davis SN. 1983. Stable-isotope composition of soil carbon dioxide in the Tucson Basin, Arizona, U.S.A. Chem. Geol. 41:219-236. https://doi.org/10.1016/S0009-2541(83)80020-5
10.1016/S0009-2541(83)80020-5Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim DG, Zaman M, Tillman RW. 2012. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 465:173-195. https://doi.org/10.1016/j.scitotenv.2012.11.050
10.1016/j.scitotenv.2012.11.05023260378Taylor AE, Myrold DD, Bottomley PJ. 2019. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils. Soil Biol. Biochem. 136:17523. https://doi.org/10.1016/j.soilbio.2019.107523
10.1016/j.soilbio.2019.107523Taylor AE, Ottoman C, Chaplen F. 2021. Implications of the thermodynamic response of soil mineralization, respiration, and nitrification on soil organic matter retention. Front. Microbiol. 12:651210. https://doi.org/10.3389/fmicb.2021.651210
10.3389/fmicb.2021.65121034093466PMC8170049Toma Y, Takakai F, Darung U, Kuramochi K, Limin SH, Dohong S, Hatano R. 2011. Nitrous oxide emission derived from soil organic matter decomposition from tropical agricultural peat soil in central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 57:436-451. https://doi.org/10.1080/00380768.2011.587203
10.1080/00380768.2011.587203Wang C, Amon B, Schulz K, Mehdi B. 2021. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review. Agronomy 11:770. https://doi.org/10.3390/agronomy11040770
10.3390/agronomy11040770Wei J, Amelung W, Lehndorff E, Schloter M, Vereecken H, Brüggemann N. 2017. N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 132:325-342. https://doi.org/10.1007/s10533-017-0306-0
10.1007/s10533-017-0306-0Xia F, Mei K, Xu Y, Zhang C, Dahlgren RA, Zhang M. 2020. Response of N2O emission to manure application in field trials of agricultural soils across the globe. Sci. Total Environ. 733:139390. https://doi.org/10.1016/j.scitotenv.2020.139390
10.1016/j.scitotenv.2020.13939032446092Yun SI, Ro HM, Choi WJ, Han GH. 2011. Interpreting the temperature-induced response of ammonia oxidizing microorganisms in soil using nitrogen isotope fractionation. J. Soils Sediments 11:1253-1261. https://doi.org/10.1007/s11368-011-0380-1
10.1007/s11368-011-0380-1Zang H, Blagodatskaya E, Wen Y, Shi L, Cheng F, Chen H, Zhao B, Zhang F, Fan M, Kuzyakov Y. 2019. Temperature sensitivity of soil organic matter mineralization decreases with long-term N fertilization: Evidence from four Q10 estimation approaches. Land Degrad. Dev. 31:683-693. https://doi.org/10.1002/ldr.3496
10.1002/ldr.3496Zhang Y, Wang J, Dai S, Sun Y, Chen J, Cai Z, Zhang J, Müller C. 2019. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 691:1127-1136. https://doi.org/10.1016/j.scitotenv.2019.07.208
10.1016/j.scitotenv.2019.07.20831466194- Publisher :Korean Society of Soil Science and Fertilizer
- Publisher(Ko) :한국토양비료학회
- Journal Title :Korean Journal of Soil Science and Fertilizer
- Journal Title(Ko) :한국토양비료학회 학회지
- Volume : 57
- No :3
- Pages :164-174
- Received Date : 2024-07-23
- Revised Date : 2024-08-12
- Accepted Date : 2024-08-12
- DOI :https://doi.org/10.7745/KJSSF.2024.57.3.164