All Issue

2021 Vol.54, Issue 2

Article

May 2021. pp. 141-150
Abstract
References
1
Al-Enazy, A.A., F. Al-Barakah, S. Al- Oud, and A. Usman. 2018. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil. Arch. Agron. Soil Sci. 64:1394-1406. 10.1080/03650340.2018.1437909
2
Amor, R.B. and M. Gueddari. 2016. Major ion geochemistry of Ghannouch-Gabes coastline (at Southeast Tunisia, Mediterranean Sea): study of the impact of phosphogypsum discharges by geochemical modeling and statistical analysis. Environ. Earth Sci. 75(10):851. 10.1007/s12665-016-5666-6
3
Batal, K.M., K. Bondari, D.M. Granberry, and B.G. Mullinix. 1994. Effects of source, rate, and frequency of N application on yield, marketable grades and rot incidence of sweet onion (Allium cepa L. cv. Granex-33). J. Hortic. Sci. 69(6):1043-1051. 10.1080/00221589.1994.11516543
4
Behairy, A.G., R.M. Asmaa, M.R. Shafik, H.A. Aisha, and M.H. Magda. 2015. Growth, yield and bulb quality of onion plants (Allium cepa L.) as affected by foliar and soil application of potassium. Middle East J. Agric. Res. 4(1):60-66.
5
Blum, S.C., E.F. Caires, and L.R.F. Alleoni. 2013. Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system. J. Soil Sci. Plant Nutr. 13(2):279-300.
6
Carvalho, M.C.S. and B. van Raij. 1997. Calcium sulphate, phosphogypsum and calcium carbonate in the amelioration of acid subsoils for root growth. Plant Soil 192(1):37-48. 10.1023/A:1004285113189
7
de Souza, G.L.F., A.B.C. Filho, F.A. de Túlio, and R.H.D. Nowaki. 2015. Effect of sulphur dose on the productivity and quality of onions. Aust. J. Crop. Sci. 9(8):728-733.
8
Elloumi, N., M. Zouari, L. Chaari, F.B. Abdallah, S. Woodward, and M. Kallel. 2015. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ. Sci. Pollut. Res. 22(19):14829-14840. 10.1007/s11356-015-4716-z25994270
9
El-Morsy, A.E., A.I. El-Kasas, and A.M. El-Tantawy. 2016. Onion plant growth and yield as affected by nitrogen, potassium and sulphur combinations under el-arish region conditions. Sinai J. Appl. Sci. 5(3):345-362. 10.21608/sinjas.2016.78657
10
Garrido, F., V. Illera, C. Vizcayno, and M.T. García-González. 2003. Evaluation of industrial by-products as soil acidity amendments: chemical and mineralogical implications. Eur. J. Soil Sci. 54(2):411-422. 10.1046/j.1365-2389.2003.00522.x
11
Gharaibeh, M.A., M.J. Rusan, N.I. Eltaif, and O.F. Shunnar. 2014. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl. Water Sci. 4:223-230. 10.1007/s13201-014-0189-3
12
Ghoname, A., Z.F. Fawzy, A.M. El-Bassiony, G.S. Riadand, and M.M.H. Abd El-Baky. 2007. Reducing onion bulbs flaking and increasing bulb yield and quality by potassium and calcium application. Aust. J. Basic Appl. Sci. 1(4):610-618.
13
Hentati, O., N. Abrantes, A.L. Caetano, S. Bouguerra, F. Gonçalves, J. Römbke, and R. Pereira. 2015. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J. Hazard. Mater. 294:80-89. 10.1016/j.jhazmat.2015.03.03425855616
14
IAEA. 2008. Naturally Occurring Radioactive Material (NORM V). Proceedings of an International Symposium. Seville, Spain, 19-22 March 2007. Vienna, Austria.
15
KOSTAT. 2020. Results of the 2020 barley, garlic and onion production survey.
16
Lee, C.H., B.Y. Ha, Y.B. Lee, and P.J. Kim. 2009. Effect of alkalized phosphogypsum on soil chemical and biological properties. Commun. Soil Sci. Plant Anal. 40:2072-2086. 10.1080/00103620902960591
17
Li, J., H.S. Wu, Z.Q. Gao, X.X. Shang, P.H. Zheng, J. Yin, D. Kakpa, Q.Q. Ren, O.K. Faustin, S.Y. Chen, Y. Xu, T.Y. Yao, W. Ji, J.S. Qian, and S.J. Ma. 2015. Impact of phosphogypsum wastes on the wheat growth and CO2 emissions and evaluation of economic-environmental benefit. Huan Jing Ke Xue. 36(8):3099-3105.
18
Liu, M., Z. Liang, H. Ma, L. Huang, and M. Wang. 2010. Responses of rice (Oryza sativa L.) growth and yield to phosphogypsum amendment in saline-sodic soils of North-East China. J. Food Agric. Environ. 8(2):827-833.
19
ME. 2010. A study on the explanation of quality certification standards for waste gypsum recycled intermediate products.
20
Mishu, M.H., F. Ahmed, M.Y. Rafi, F. Golam, and M.A. Latif. 2013. Effect of sulphur on growth, yield and yield attributes in onion (Allium cepa L.). Aust. J. Crop. Sci. 7(9):1416-1422.
21
Nayak, A.K., V.K. Mishra, D.K. Sharma, S.K. Jha, C.S. Singh, M. Shahabuddin, and M. Shahid. 2013. Efficiency of phosphogypsum and mined gypsum in reclamation and productivity of rice-wheat cropping system in sodic soil. Commun. Soil Sci. Plant Anal. 44:909-921. 10.1080/00103624.2012.747601
22
Nayak, B.R., P.K. Samanta, N. Panigrahy, S. Mohapatra, A.K. Mohanty, A.K. Dash, B. Jena, N. Panda, B. Sahoo, and P. Mishra. 2016. Response of different sources and doses of sulphur on growth, yield and uptake of onion (Allium cepa L.). Int. J. Bio-resource Stress Manag. 7(1), 66-69. 10.23910/IJBSM/2016.7.1.1502
23
Nelson, D.W. and L.E. Sommers. 1996. Methods of soil analysis. Part 3. Chemical Methods. Soil Society of America Book Series No. 5, p. 961-1010.
24
NIAST. 2000. Methods of analysis of soil and plant. RDA, Suwon, Korea.
25
Park, B.K. 2004. Agricultural use of phosphogypsum fertilizer. Soil Fert. 19:18-27.
26
RDA. 2018. Basic survey on agricultural use of phosphogypsum. p. 91.
27
Saadaoui, E., N. Ghazel, C.B. Romdhane, and N. Massoudi. 2017. Phosphogypsum: potential uses and problems - a review. Int. J. Environ. Stud. 74(4):558-567. 10.1080/00207233.2017.1330582
28
Shafeek, M.R., M.K. Nagwa, S. Hassan, M. Singer, and N.H.M. El-Greadly. 2013. Effect of potassium fertilizer and foliar spraying with Etherel on plant development, yield and bulb quality of onion plants (Allium cepa L). J. Appl. Sci. Res. 9 (2):1140-1146.
29
Smaoui-Jardak, M., W. Kriaa, M. Maalej, M. Zouari, L. Kamoun, W. Trabelsi, F.B. Abdallah, and N. Elloumi. 2017. Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology 26(8):1089-1104. 10.1007/s10646-017-1836-x28730330
30
Tang, Z., T. Lei, J. Yu, I. Shainberg, A.I. Mamedov, M. Ben-Hur, and G.J. Levy. 2006. Runoff and interrill erosion in sodic soils treated with dry PAM and phosphogypsum. Soil Sci. Soc. Am. J. 70:679-690. 10.2136/sssaj2004.0395
31
Tayibi, H., M. Choura, F.A. López, F.J. Alguacil, and A. López-Delgado. 2009. Environmental impact and management of phosphogypsum. J. Environ. Manage. 90(8):2377-2386. 10.1016/j.jenvman.2009.03.00719406560
32
Toma, M. and M. Saigusa. 1997. Effects of Phosphogypsum on amelioration of strongly acid nonallophanic Andosols. Plant Soil 192:49-55. 10.1023/A:1004258629525
33
Yoon, Y.E., S. Kuppusamy, K.M. Cho, P.J. Kim, Y.B. Kwack, and Y.B. Lee. 2017. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chem. 215:185-192. 10.1016/j.foodchem.2016.07.16727542466
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :2
  • Pages :141-150
  • Received Date :2021. 02. 15
  • Revised Date :2021. 02. 26
  • Accepted Date : 2021. 03. 05