All Issue

2021 Vol.54, Issue 4 Preview Page

Article

30 November 2021. pp. 578-587
Abstract
References
1
Ayed, I.A. 1970. A study of the mobilization of iron in tomato roots by chelate treatments. Plant Soil 32:18-26. 10.1007/BF01372842
2
Brown, J.C., L.O. Tiffin, and R.S. Holmes. 1960. Competition between chelating agents and roots as factor affecting absorption of iron and other ions by plant species. Plant Physiol. 35:878-886. 10.1104/pp.35.6.87816655437PMC406054
3
Chaney, R.L., J.C. Brown, and L.O. Tiffin. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50:208-213. 10.1104/pp.50.2.20816658143PMC366111
4
Doostikhah, N., E. Panahpour, H. Nadian, and A. Gholami. 2020. Tomato (Lycopersicon esculentum L.) nutrient and lead uptake affected by zeolite and DTPA in a lead-polluted soil. Plant Biol. (Stuttg) 22:317-322. 10.1111/plb.1305931637818
5
Gonzalez, D. and J.M. Alvarez. 2013. Effects of copper chelates on lettuce response, leaching, and soil status. Soil Sci. Soc. Am. J. 77:546-557. 10.2136/sssaj2012.0164
6
Guo, Y., X. Wang, X. Li, J. Wang, M. Xu, and D. Li. 2016. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Sci. Rep. 6:36105. 10.1038/srep3610527782204PMC5080587
7
Hall, I.V., L.E. Aalders, and L.R. Townsend. 1964. The effects of soil pH on the mineral composition and growth of the lowbush blueberry. Can. J. Plant Sci. 44:433-438. 10.4141/cjps64-084
8
Jiang, Y., Y. Li, Q. Zeng, J. Wei, and H. Yu. 2017. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries. Acta Hortic. 1180:269-276. 10.17660/ActaHortic.2017.1180.36
9
Kim, M.K., K.A. Roh, B.G. Ko, S.J. Park, G.B. Jung, D.B. Lee, and C.S. Kim. 2010. Evaluation of nutrient discharges from greenhouses with flooding soil surface at two different locations. Korean J. Soil Sci. Fert. 43:315-321.
10
Kim, M.S., Y.H. Kim, M.Y. Roh, S.S. Kang, H.B. Yoon, and H.Y. Lee. 2012. Effect of chelating agents on the grwoth of Chinese cabbage and availability of nutrients in plastic film house soils. Korean J. Soil Sci. Fert. 45:949-954. 10.7745/KJSSF.2012.45.6.949
11
Lee, C.K., K.W. Seo, G.J. Lee, S.U. Choi, B.K. Ahn, M.S. Ahn, D.S. Seo, and S.I. Yun. 2019. Nutrient uptake and growth of watermelons in DTPA-treated saline soil in a plastic film greenhouse. Hortic. Sci. Technol. 37:32-41. 10.12972/kjhst.20190004
12
Lee, T.J., B.P. Luitel, and W.H. Kang. 2011. Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. campestris). Hortic. Environ. Biotechnol. 52:252-258. 10.1007/s13580-011-0224-3
13
Lide, D.R. 2004. CRC handbook of chemistry and physics, 84th ed. CRC Press, FL, USA.
14
Lindsay, W.L. 1979. Chemical equilibria in soils. p. 238-266. John Wiley & Sons, Chichester, Sussex, UK.
15
NIAS. 2017. Monitoring project on agri-environmental quality in Korea. National Institute of Agricultural Science, RDA, Wanju, Korea.
16
Noh, H.J., H.S. Chae, H.H. Cho, and C.G. Lee. 2017. Effect of chelated organic minerals liquid fertilizer on growth and fruit quality in ‘Jukhyang’ strawberry. Korean J. Org. Agric. 25:725-736. 10.11625/KJOA.2017.25.4.725
17
O’Connor, G.A., W.L. Lindsay, and S.R. Olson. 1971. Diffusion of iron and iron chelates in soil. Soil Sci. Soc. Am. J. 35:407-410. 10.2136/sssaj1971.03615995003500030024x
18
Park, J.M., T.J. Lim, and S.E. Lee. 2012. Effect of subsurface drip pipes spacing on the yield of lettuce, irrigation efficiency, and soil chemical properties in greenhouse cultivation. Korean J. Soil Sci. Fert. 45:683-689. 10.7745/KJSSF.2012.45.5.683
19
Qaswar, M., L. Dongchu, H. Jing, H. Tianfu, W. Ahmed, M. Abbas, Z. Lu, D. Jiangxue, Z.H. Khan, S. Ullah, Z. Huimin, and W. Boren. 2020. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat-maize cropping system. Sci. Rep. 10:19828. 10.1038/s41598-020-76892-833188239PMC7666156
20
Rengel, Z. 1999. Physiological responses of wheat genotypes grown in chelator-buffered nutrient solutions with increasing concentrations of excess HEDTA. Plant Soil 215:193-202. 10.1023/A:1004595112969
21
Wallace, A., R.T. Muller, J.W. Cha, and G.V. Alexander. 1974. Soil pH, excess lime, and chelating agent on micronutrients in soybeans and bush beans. Agron. J. 66:698-700. 10.2134/agronj1974.00021962006600050027x
22
Watmough, S.A., M.C. Eimers, and P.J. Dillon. 2007. Manganese cycling in central Ontario forests: Response to soil acidification. Appl. Geochem. 22:1241-1247. 10.1016/j.apgeochem.2007.03.039
23
Wee, C.D., J.X. Li, H.L. Kim, and B.K. Sohn. 2010. Salts reduction effect of natural zeolite in plastic film house soil. Korean J. Soil Sci. Fert. 43:430-435.
24
Weinstein, L.H., W.R. Robbins, and H.F. Perkins. 1954. Chelating agents and plant nutrition. Sci. 120:41-43. 10.1126/science.120.3106.4117843199
25
Wu, L.H., Y.M. Luo, X.R. Xing, and P. Christie. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102:307-318. 10.1016/j.agee.2003.09.002
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :4
  • Pages :578-587
  • Received Date :2021. 11. 02
  • Revised Date :2021. 11. 12
  • Accepted Date : 2021. 11. 15