All Issue

2022 Vol.55, Issue 1 Preview Page

Article

28 February 2022. pp. 58-70
Abstract
References
1
Ahn, B.K., D.Y. Ko, H.J. Choi, and H.G. Chon. 2020. Distribution of water-soluble nutrients and physico-chemical properties of upland and orchard field soils in Jeonbuk province. Korea J. Soil Sci. Fert. 53:375-381. 10.7745/KJSSF.2020.53.3.375
2
Breiman, L. 2001. Random forests. Mach. Learn. 45:5-32. 10.1023/A:1010933404324
3
Calle, J.L.P., M. Ferreiro-Gonzalez, A. Ruiz-Rodriguez, G.F. Barbero, J.A. Alvarez, M. Palma, and J. Ayuso. 2021. A methodology based on FT-IR data combined with random forest model to generate spectralprints for the characterization of high-quality vinegars. Foods 10:1141. 10.3390/foods1006141134207095PMC8233915
4
Chaplot, V., M. Bernoux, C. Walter, P. Curmi, and U. Herpin. 2001. Soil carbon storage prediction in temperate hydromorphic soils using a morphologic index and digital elevation model. Soil Sci. 166:48-60. 10.1097/00010694-200101000-00008
5
Florinsky, I.V., R.G. Eilers, G. Manning, and L. Fuller. 2002. Prediction of soil properties by digital terrain modelling. Environ. Modell. Software 17:295-311. 10.1016/S1364-8152(01)00067-6
6
Franklin, J. 2005. The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27:83-85. 10.1007/BF02985802
7
Grimm, R., T. Behrens, M. Märker, and H. Elsenbeer. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island-Digital soil mapping using random forests analysis. Geoderma 146:102-113. 10.1016/j.geoderma.2008.05.008
8
Hastie, T., R. Tibshirani, J.H. Friedman, and J.H. Firedman. 2009. The elements of statistical leargnin: data mining, inference, and prediction. Springer, New York, USA.
9
Hwang, H.Y., S.H. Kim, M.S. Kim, D.W. Le, J.E. Rim, J.H. Shim, and S.J. Park. 2019. Soil organic carbon fractions and stocks as affected by organic fertilizers in rice paddy soil. Korean J. Soil Sci. Fert. 52:520-529. 10.7745/KJSSF.2019.52.4.520
10
Jeong, G.Y. 2018. Spatial prediction and economic evaluation of soil carbon stocks using digital soil mapping in an agricultural landscape. Geogr. J. Korea 52:389-401.
11
Karhu, K., A.I. Gärdenäs, J. Heikkinen, P. Vanhala, M. Tuomi, and J. Liski. 2012. Impacts of organic amendements on carbon stocks of an agricultural soil-Comparison of model-simulations to measurements. Geoderma 189:606-616. 10.1016/j.geoderma.2012.06.007
12
Kim, H.J., S.K. Kim, S.W. Kim, K.J. Kwak, and O.D. Kwon. 2021. Changes in chemical properties of orchard soils in Jeonnam province between 2002 and 2018. Korean J. Soil Sci. Fert. 54:1-9. 10.7745/KJSSF.2021.54.1.001
13
Kim, J. and S. Grunwald. 2016. Assessment of carbon stocks in the topsoil using random forest and remote sensing images. J. Environ. Qual. 45:1910-1918. 10.2134/jeq2016.03.007627898790
14
KMA (Korea Meteorological Administration). 2018. Annual climatological reports. Seoul, Korea.
15
Lal, R. 2008. Carbon sequestration. Philos. Trans. R. Soc. B: Biol. Sci. 363:815-830. 10.1098/rstb.2007.218517761468PMC2610111
16
Lee, J.H., J.H. Im, K.M. Kim, and J. Heo. 2015. Change analysis of aboveground forest carbon stocks according to the land cover change using multi-temporal Landsat TM images and machine learning algorithms. J. Korean Assoc. Geogr. Inf. Stud. 18:81-99. 10.11108/kagis.2015.18.4.081
17
Lee, Y.H., M.S. Kim, S.J. Park, H.Y. Hwang, and S.H. Kim. 2020. Assessment of soil organic carbon fractions and stocks under different farming practice in a single maize cropping system. Korean J. Soil Sci. Fert. 53:626-634. 10.7745/KJSSF.2020.53.4.626
18
Lim, S.S., H.I. Yang, H.J. Park, S.I. Park, B.S. Seo, K.S. Lee, S.H. Lee, S.M. Lee, H.Y. Kim, and J.H. Ryu. 2020. Land-use management for sustainable rice production and carbon sequestration in reclaimed coastal tideland soils of South Korea: A review. Soil Sci. Plant Nutr. 66:60-75. 10.1080/00380768.2019.1674121
19
Nabiollahi, K., S. Eskandari, R. Taghizadeh-Mehrjardi, R. Kerry, and J. Triantafilis. 2019. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Manag. 10:63-77. 10.1080/17583004.2018.1553434
20
Nguyen, T.T., T.D. Pham, C.T. Nguyen, J. Delfos, R. Archibald, K.B. Dang, N.B. Hoang, W. Guo, and H.H. Ngo. 2022. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 804:150187. 10.1016/j.scitotenv.2021.15018734517328
21
Park, H.J., B.S. Seo, Y.J. Jeong, H.I. Yang, S.I. Park, N.R. Baek, J.H. Kwak, and W.J. Choi. 2022. Soil salinity, fertility and carbon content, and rice yield of salt-affected paddy with different cultivation period in southwestern coastal area of South Korea. Soil Sci. Plant Nutr. 10.1080/00380768.2021.1967082.
22
Powers, J.S. and W.H. Schlesinger. 2002. Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma 109:165-190. 10.1016/S0016-7061(02)00147-7
23
Schmidt, M.W., M.S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I.A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, and D.A. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49-56. 10.1038/nature1038621979045
24
Smith, P. 2012. Soils and climate change. Curr. Opin. Environ. Sustainability 4:539-544. 10.1016/j.cosust.2012.06.005
25
Sothe, C., A. Gonsamo, J. Arabian, and J. Snider. 2022. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma 405:115402. 10.1016/j.geoderma.2021.115402
26
Thompson, J.A. and R.K. Kolka. 2005. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Sci. Soc. Am. J. 69:1086-1093. 10.2136/sssaj2004.0322
27
Thompson, J.A., E.M. Pena-Yewtukhiw, and J.H. Grove. 2006. Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability. Geoderma 133:57-70. 10.1016/j.geoderma.2006.03.037
28
Wang, B., J.M. Gray, C.M. Waters, M.R. Anwar, S.E. Orgill, A.L. Cowie, P. Feng, and D.L. Liu. 2022. Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia. Geoderma 405:115442. 10.1016/j.geoderma.2021.115442
29
Wiesmeier, M., L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Ließ, and N. Garcia-Franco. 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333:149-162. 10.1016/j.geoderma.2018.07.026
30
Yao, D., X. Zhan, and C.K. Kwoh. 2019. An improvved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinformatics 20:1-14. 10.1186/s12859-019-3290-731795954PMC6889672
31
Zeraatpisheh, M., Y. Garosi, H.R. Owliaie, S. Ayoubi, R. Taghizadeh-Mehrjardi, T. Scholten, and M. Xu. 2022. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 208:105723. 10.1016/j.catena.2021.105723
32
Zhou, T., Y. Geng, J. Chen, M. Liu, D. Haase, and A. Lausch. 2020. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 114:106288. 10.1016/j.ecolind.2020.106288
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 55
  • No :1
  • Pages :58-70
  • Received Date :2022. 01. 25
  • Revised Date :2022. 02. 08
  • Accepted Date : 2022. 02. 08