All Issue

2024 Vol.57, Issue 3 Preview Page

Original research article

31 August 2024. pp. 205-215
Abstract
References
1

Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. 2016. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7:513. https://doi.org/10.3389/fpls.2016.00513

10.3389/fpls.2016.00513
2

Chong J, Soufan O, Li C, Caraus I, Li S, Bourqueet G, Whishart DS, Xia J. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 46:W486-W494. https://doi.org/10.1093/nar/gky310

10.1093/nar/gky31029762782PMC6030889
3

de Anicésio ÉCA, Monteiro FA. 2022. Potassium reduces oxidative stress in tanzania guinea grass under cadmium toxicity. Environ. Sci. Pollut. Res. Int. 29:1184-1198. https://doi.org/10.1007/s11356-021-15620-9

10.1007/s11356-021-15620-934350569
4

Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L. 2014. Toxic elements in food: occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf. 13:457-472. https://doi.org/10.1111/1541-4337.12068

10.1111/1541-4337.1206833412705
5

Ji W, Chen Z, Li D, Ni W. 2012. Identifying the criteria of cadmium pollution in paddy soils based on a field survey. Energy Procedia. 16:27-31. https://doi.org/10.1016/j.egypro.2012.01.006

10.1016/j.egypro.2012.01.006
6

Jung HI, Chae MJ, Lee TG, Yoon JH, Kim MS, Jeon S, Kim HS. 2021. Soil nutrient and rice (Oryza sativa L.) growth characteristics under different arsenic contamination levels. Korean J. Soil Sci. Fert. 54(4):601-609. https://doi.org/10.7745/KJSSF.2021.54.4.601

10.7745/KJSSF.2021.54.4.601
7

Kim HS, Seo BH, Owens G, Kim YN, Lee JH, Lee M, Kim KR. 2020. Phytoavailability-based threshold values for cadmium in soil for safer crop production. Ecotoxico. Environ. Saf. 201:110866. https://doi.org/10.1016/j.ecoenv.2020.110866

10.1016/j.ecoenv.2020.11086632554205
8

Kim KR, Kim JG, Park JS, Kim MS, Owens G, Youn GH, Lee JS. 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manage. 102:88-95. https://doi.org/10.1016/j.jenvman.2012.02.001

10.1016/j.jenvman.2012.02.00122446136
9

Kim KR. 2024. Transitioning agricultural soil heavy metal management policies to phytoavailability concept. Korean J. Soil Sci. Fert. 57:124-129. https://doi.org/10.7745/KJSSF.2024.57.2.124

10.7745/KJSSF.2024.57.2.124
10

Kim MS, Min HG, Lee SH, Kim JG. 2020. Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil. Ecol. Resil. Infrastruct. 7:63-71.

11

Koh MK, Suratman S, Tahir NM. 2015. Dissolved and Suspended Particulate Metals in Setiu River Nasin, Terengganu, Malaysia. Sains Malays. 44:957-964. https://doi.org/10.17576/jsm-2015-4407-06

10.17576/jsm-2015-4407-06
12

Lacatusu R. 2000. Appraising levels of soil contamination and pollution with heavy metals. European Soil Bureau. 4:93-102.

13

Lee S, Kim HS, Park SW, Cho IK, Kim WI. 2017. Prediction of arsenic uptake by rice in the paddy fields vulnerable to arsenic contamination. Korean J. Soil Sci. Fert. 50:115-126. https://doi.org/10.7745/KJSSF.2017.50.2.115

10.7745/KJSSF.2017.50.2.115
14

Li L, Wu H, van Gestel CA Peijnenburg WJ, Allen HE. 2014. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China Environ. Pollut. 188:144-152. https://doi.org/10.1016/j.envpol.2014.02.003

10.1016/j.envpol.2014.02.00324583712
15

Li T, Li J, Zhan X, Wang X, He B, Cao F, Liao C, Yu Y, Zhang Z, Zhang J, Li B, Chen J, Li H, Zhu Z, Wei Y, Hu J. 2022. Application of Exogenous Iron Alters the Microbial Community Structure and Reduces the Accumulation of Cadmium and Arsenic in Rice (Oryza sativa L.). J. Nanomater. 12:1311. https://doi.org/10.3390/nano12081311

10.3390/nano1208131135458019PMC9028164
16

Lindsay WL. 1979. Chemical equilibria in soils. John Wiley and Sons Ltd., New York, USA.

17

Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Aral. 15:1409-1416. https://doi.org/10.1080/00103628409367568

10.1080/00103628409367568
18

Ministry of Environment. 2021. Status of Soil Pollution: Soil Pollution Survey Result Pollution Level by Pollution Source. New York, USA.

19

Noh YD, Kim KR, Kim WI, Jung KY, Hong CO. 2015. Effect of soil chemical properties on phytoavailability of arsenic, cadmium and lead in medicinal plant fields. J. Agric. Life Sci. 49:267-277. https://doi.org/10.14397/jals.2015.49.5.267

10.14397/jals.2015.49.5.267
20

Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, Li T. 2014. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxico. Environ. Saf. 103:101-107. https://doi.org/10.1016/j.ecoenv.2013.10.016

10.1016/j.ecoenv.2013.10.01624418797
21

RDA. 2012. Analysis standard for research in agricultural science and technology, RDA, Suwon, Korea.

22

Shuhui D, Jiashuo Y, Zhou Z, Yansong X, Li S, Weiai Z, Xiangmin R. 2021. Quantitative Relationship Between Paddy Soil Properties and Cadmium Content in Tobacco leaves. Bull. Environ. Contam. Toxicol. 106:878-883. https://doi.org/10.1007/s00128-021-03168-w

10.1007/s00128-021-03168-w33811509
23

Sun L, Song K, Shi L, Duan D, Zhang H, Sun Y, Xue Y. 2021. Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants. Sci. Rep. 11:11468. https://doi.org/10.1038/s41598-021-91003-x

10.1038/s41598-021-91003-x34075125PMC8169911
24

Tan Y, Zhou X, Peng Y, Zheng Z, Gao X, Ma Y, Chen S, Cui S, Fan B, Chen Q. 2022. Effects of phosphorus-containing material application on soil cadmium bioavailability: A meta-analysis. Environ, Sci. Pollut. Res. 29:42372-42383. https://doi.org/10.1007/s11356-022-19909-1

10.1007/s11356-022-19909-135359209
25

Wang XP, Shan XQ, Zhang SZ, Wen B. 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere. 55:811-822. https://doi.org/10.1016/j.chemosphere.2003.12.003

10.1016/j.chemosphere.2003.12.00315041285
26

Xian XF, Shokohifard GI. 1989. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Poll. 45:265-273. https://doi.org/10.1007/BF00283457

10.1007/BF00283457
27

Yu H, Li C, Yan J, Ma Y, Zhou X, Yu W, Kan H, Meng Q, Xie R, Dong P. 2023. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 13:3505-3519. https://doi.org/10.1039/D2RA07095B

10.1039/D2RA07095B36756568PMC9890661
28

Yun JJ, Lee DW, Shim JH, Jeon SH, Lee YH, Kwon SI, Park JH, Kang SW, Cho JS, Kim SH. 2023. Evaluation of crop growth and soil chemical properties in cadmium contaminated soil using biochar derived from rendered animal carcass residues. Korean J. Soil Sci. Fert. 56:533-543. https://doi.org/10.7745/KJSSF.2023.56.4.533

10.7745/KJSSF.2023.56.4.533
29

Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. 2021. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci. Rep. 11:9913. https://doi.org/10.1038/s41598-021-89322-0

10.1038/s41598-021-89322-033972641PMC8110755
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 57
  • No :3
  • Pages :205-215
  • Received Date : 2024-08-05
  • Revised Date : 2024-08-28
  • Accepted Date : 2024-08-28