All Issue

2023 Vol.56, Issue 3 Preview Page

Original research article

31 August 2023. pp. 246-259
Abstract
References
1
Adams, T.M. and S. Adams. 1983. The effects of liming and soil pH on carbon and nitrogen contained in the soil biomass. J. Agric. Sci. 101(3):553-558. 10.1017/S0021859600038570
2
An, H., S. Bae, Y. Lee, J. Lee, S.H. Jeon, and S.Y. Kim. 2022. Effects of combined application of organic and inorganic fertilizers on mitigating greenhouse gas emissions and improving maize productivity in a field condition. Korean J. Soil Sci. Fert. 55(4):261-272. 10.7745/KJSSF.2022.55.4.261
3
Bååth, E. and T.H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35(7):955-963. 10.1016/S0038-0717(03)00154-8
4
Barzegar, A.R., A. Yousefi, and A. Daryashenas. 2002. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 247(2):295-301. 10.1023/A:1021561628045
5
Bolan, N.S., A. Kunhikrishnan, G.K. Choppala, R. Thangarajan, and J. Chung. 2012. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci. Total Environ. 424:264-270. 10.1016/j.scitotenv.2012.02.06122444054
6
Bond-Lamberty, B. and A. Thomson. 2010. Temperature-associated increases in the global soil respiration record. Nature 464:579-582. 10.1038/nature0893020336143
7
Canatoy, R.C., S.R. Cho, Y.S. Ok, S.T. Jeong, and P.J. Kim. 2022a. Critical evaluation of biochar utilization effect on mitigating global warming in whole rice cropping boundary. Sci. Total Environ. 827:154344. 10.1016/j.scitotenv.2022.15434435257754
8
Canatoy, R.C., S.T. Jeong, S.J.C. Galgo, P.J. Kim, and S.R. Cho. 2022b. Biochar as soil amendment: Syngas recycling system is essential to create positive carbon credit. Sci. Total Environ. 809:151140. 10.1016/j.scitotenv.2021.15114034695470
9
Chen, A., X. Xie, M. Dorodnikov, W. Wang, T. Ge, O. Shibistova, W. Wei, and G. Guggenberger. 2016. Response of paddy soil organic carbon accumulation to changes in long-term yield-driven carbon inputs in subtropical China. Agric. Ecosyst. Environ. 232:302-311. 10.1016/j.agee.2016.08.018
10
Chen, X., J. Tang, L. Jiang, B. Li, J. Chen, and C. Fang. 2010. Evaluating the impacts of incubation procedures on estimated Q10 values of soil respiration. Soil Biol. Biochem. 42(12):2282-2288. 10.1016/j.soilbio.2010.08.030
11
Choi, W.S., Y.K. Hong, K.J. Min, K.J. Kim, and S.C. Kim. 2017. Evaluating soil respiration as indicator of heavy metal pollution in agricultural field. Korean J. Soil Sci. Fert. 50(5):472-481. 10.7745/KJSSF.2017.50.5.472
12
Conant, R.T., M.G. Ryan, G.I. Ågren, H.E. Birge, E.A. Davidson, P.E. Eliasson, S.E. Evans, S.D. Frey, C.P. Giardina, and M.A. Bradford. 2011. Temperature and soil organic matter decomposition rates - Synthesis of current knowledge and a way forward. Global Change Biol. 17(11):3392-3404. 10.1111/j.1365-2486.2011.02496.x
13
Curiel Yuste, J., D.D. Baldocchi, A. Gershenson, A. Goldstein, L. Misson, and S. Wong. 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biol. 13(9):2018-2035. 10.1111/j.1365-2486.2007.01415.x
14
Eberwein, J.R., P.Y. Oikawa, L.A. Allsman, and G.D. Jenerette. 2015. Carbon availability regulates soil respiration response to nitrogen and temperature. Soil Biol. Biochem. 88:158-164. 10.1016/j.soilbio.2015.05.014
15
Fan, J., W. Ding, J. Xiang, S. Qin, J. Zhang, and N. Ziadi. 2014. Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application. Geoderma 230:22-28. 10.1016/j.geoderma.2014.03.027
16
Gross, A. and B. Glaser. 2021. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 11(1):5516. 10.1038/s41598-021-82739-733750809PMC7943820
17
Hall, S.J., W. Huang, V.I. Timokhin, and K.E. Hammel. 2020. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101(9):e03113. 10.1002/ecy.311332506475
18
Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85:221-268. 10.1016/S0065-2113(04)85005-3
19
Heimann, M. and M. Reichstein. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289-292. 10.1038/nature0659118202646
20
Huang, X., X. Lu, G. Zhou, Y. Shi, D. Zhang, W. Zhang, and S.H. Bai. 2022. How land-use change affects soil respiration in an alpine agro-pastoral ecotone. Catena 214:106291. 10.1016/j.catena.2022.106291
21
Hwang, H.Y., G.W. Kim, Y.B. Lee, P.J. Kim, and S.Y. Kim. 2015. Improvement of the value of green manure via mixed hairy vetch and barley cultivation in temperate paddy soil. Field Crops Res. 183:138-146. 10.1016/j.fcr.2015.08.001
22
Iwasaki, S., Y. Endo, and R. Hatano. 2017. The effect of organic matter application on carbon sequestration and soil fertility in upland fields of different types of Andosols. Soil Sci. Plant Nutr. 63(2):200-220. 10.1080/00380768.2017.1309255
23
Jeong, S.T., G.W. Kim, H.Y. Hwang, P.J. Kim, and S.Y. Kim. 2018. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 613:115-122. 10.1016/j.scitotenv.2017.09.00128910713
24
Kätterer, T., G. Börjesson, and H. Kirchmann. 2014. Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric. Ecosyst. Environ. 189:110-118. 10.1016/j.agee.2014.03.025
25
Kim, C.H., Y.Y. Kim, S.B. Park, and T.J. Eom. 2004. Chemical composition and alkaline pulping of a stem of red pepper (Capsium annuum L.). J. Korean Wood Sci. Technol. 32(2):26-32.
26
Kimetu, J.M., J. Lehmann, S.O. Ngoze, D.N. Mugendi, J.M. Kinyangi, S. Riha, L. Verchot, J.W. Recha, and A.N. Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726-739. 10.1007/s10021-008-9154-z
27
Kirschbaum, M.U. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27(6):753-760. 10.1016/0038-0717(94)00242-S
28
Ko, B.G., C.H. Lee, M.S. Kim, G.Y. Kim, S.J. Park, and S.G. Yun. 2016. Effect of soil respiration on light fraction-C and N availability in soil applied with organic matter. Korean J. Soil Sci. Fert. 49(5):510-516. 10.7745/KJSSF.2016.49.5.510
29
KOSIS. 2022. Agricultural area statistics. Korean Statical Information Service (https://kosis.kr/index/index.do).
30
Lee, Y., S. Choi, J. Lee, H. An, C.H. Lee, P.H. Yi, S.T. Jeong, and S.Y. Kim. 2021. Characteristics of distribution and decomposition of organic matter in soils cultivated with various fruits and vegetables in plastic film house fields. Korean J. Soil Sci. Fert. 54(4):401-412. 10.7745/KJSSF.2021.54.4.401
31
Lima, D.L., S.M. Santos, H.W. Scherer, R.J. Schneider, A.C. Duarte, E.B. Santos, and V.I. Esteves. 2009. Effects of organic and inorganic amendments on soil organic matter properties. Geoderma 150(1-2):38-45. 10.1016/j.geoderma.2009.01.009
32
Lloyd, J. and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8(3):315-323. 10.2307/2389824
33
Majumder, S., S. Neogi, T. Dutta, M.A. Powel, and P. Banik. 2019. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. J. Environ. Manage. 250:109466. 10.1016/j.jenvman.2019.10946631487602
34
NAS. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
35
NAS. 2019. Fertilizer recommendation for crops (4th ed.). National Institute of Agricultural Science and Technology, RDA, Wanju, Korea.
36
Ouédraogo, E., A. Mando, and N.P. Zombré. 2001. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 84(3):259-266. 10.1016/S0167-8809(00)00246-2
37
Park, J.H., S.W. Kang, J.J. Yun, S.G. Lee, S.H. Kim, J.S. Beak, and J.S. Cho. 2021. Effects of co-application of biochars and composts on lettuce growth. Korean J. Soil Sci. Fert. 54(2):151-160. 10.7745/KJSSF.2021.54.2.151
38
Pietri, J.A. and P.C. Brookes. 2008. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40(7):1856-1861. 10.1016/j.soilbio.2008.03.020
39
Probert, M.E., R.J. Delve, S.K. Kimani, and J.P. Dimes. 2005. Modelling nitrogen mineralization from manures: Representing quality aspects by varying C:N ratio of sub-pools. Soil Biol. Biochem. 37(2):279-287. 10.1016/j.soilbio.2004.07.040
40
Reeve, J.R., J.B. Endelman, B.E. Miller, and D.J. Hole. 2012. Residual effects of compost on soil quality and dryland wheat yield sixteen years after compost application. Soil Sci. Soc. Am. J. 76(1):278-285. 10.2136/sssaj2011.0123
41
Riffaldi, R., A. Saviozzi, and R. Levi-Minzi. 1996. Carbon mineralization kinetics as influenced by soil properties. Biol. Fertil. Soils 22:293-298. 10.1007/BF00334572
42
Rousk, J., P.C. Brookes, and E. Bååth. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. J. Appl. Environ. Microbiol. 75(6):1589-1596. 10.1128/AEM.02775-0819151179PMC2655475
43
Sierra, C.A., S.E. Trumbore, E.A. Davidson, S. Vicca, and I. Janssens. 2015. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7(1):335-356. 10.1002/2014MS000358
44
Tavali, I.E. 2021. Short-term effect of compost amendment on the fertility of calcareous soil and basil growth. Commun. Soil Sci. Plant Anal. 52(2):172-182. 10.1080/00103624.2020.1854292
45
Thangarajan, R., N.S. Bolan, G. Tian, R. Naidu, and A. Kunhikrishnan. 2013. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 465:72-96. 10.1016/j.scitotenv.2013.01.03123433468
46
Tian, Y., K. Haibara, H. Toda, F. Ding, Y. Liu, and D. Choi. 2008. Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China. J. For. Res. 13(4):205-214. 10.1007/s10310-008-0073-9
47
Xu, X., Z. Shi, D. Li, A. Rey, H. Ruan, J.M. Craine, J. Liang, J. Zhou, and Y. Luo. 2016. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 262:235-242. 10.1016/j.geoderma.2015.08.038
48
Zhang, W., M. Xu, X. Wang, Q. Huang, J. Nie, Z. Li, S. Li, S.W. Hwang, and K.B. Lee. 2012. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J. Soils Sediments 12:457-470. 10.1007/s11368-011-0467-8
49
Zhang, Z., D. Liu, Y. Qiao, S. Li, Y. Chen, and C. Hu. 2021. Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis. Sci. Total Environ. 783:147103. 10.1016/j.scitotenv.2021.14710334088163
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :3
  • Pages :246-259
  • Received Date : 2023-08-01
  • Revised Date : 2023-08-15
  • Accepted Date : 2023-08-17