All Issue

2024 Vol.57, Issue 4 Preview Page

Review

30 November 2024. pp. 440-454
Abstract
References
1

Ahn JH, Choi MY, Kim BY, Lee JS, Song JK, Kim GY, Weon HY. 2014. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil. Microb. Ecol. 68:271-283. https://doi.org/10.1007/s00248-014-0371-z

10.1007/s00248-014-0371-z24682309
2

Association of American Plant Food Control Officials (AAPFCO). 1995. Official Publication No. 48. USA.

3

Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release. 181:11-21. https://doi.org/10.1016/j.jconrel.2014.02.020

10.1016/j.jconrel.2014.02.02024593892
4

Back JH, Kim BJ. 2000. Effects of application of slow-released nitrogen fertilizer using waste paper slurry on the growth and yield of rice and chemical properties of soil. Korean J. Soil Sci. Fert. 33:114-120.

5

Blaylock AD, Kaufmann J, Dowbenko RD. 2005. Nitrogen fertilizer technologies. 6:8-13. In Western Nutrient Management Conference. Salt Lake City, UT, USA.

6

Chang SW, Kang MS, Song IH, Jang JR, Lee EJ, Park SW. 2011. Effects of fertilizer types on pollutant loadings from rice paddy fields. J. Korean Soc. Agric. Eng. 53:111-119. https://doi.org/10.5389/KSAE.2011.53.6.111

10.5389/KSAE.2011.53.6.111
7

Chen XY, Wu LH, Hang KF, Li JX, Ying JY. 2010. Effects of different mixture rates of coated urea and prilled urea on rice grain yield and nitrogen use efficiency. Journal of Plant Nutrition and Fertilizers. 16:918-923.

8

Choi MM, Meisen A. 1997. Sulfur coating of urea in shallow spouted beds. Chem. Eng. Sci. 52:1073-1086. https://doi.org/10.1016/S0009-2509(96)00377-6

10.1016/S0009-2509(96)00377-6
9

Clapp JJ. 1993. Foliar application of liquid urea-triazone-based nitrogen fertilizers and crop safety. HortTechnology. 3:442-444. https://doi.org/10.21273/HORTTECH.3.4.442

10.21273/HORTTECH.3.4.442
10

Cong Z, Yazhen S, Changwen D, Jianmin Z, Huoyan W, Xiaoqin C. 2010. Evaluation of waterborne coating for controlled-release fertilizer using Wurster fluidized bed. Ind. Eng. Chem. Res. 49:9644-9647. https://doi.org/10.1021/ie101239m

10.1021/ie101239m
11

Constable M, Charlton M, Jensen F, McDonald K, Craig G, Taylor KW. 2003. An ecological risk assessment of ammonia in the aquatic environment. Hum. Ecol. Risk Assess. 9:527-548. https://doi.org/10.1080/713609921

10.1080/713609921
12

Costa CM, Silva MM, Lanceros-Méndez SJRA. 2013. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. Rsc Advances. 3:11404-11417. https://doi.org/10.1039/C3RA40732B

10.1039/c3ra40732b
13

Du CW, Zhou JM, Shaviv A. 2006. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 14:223-230. https://doi.org/10.1007/s10924-006-0025-4

10.1007/s10924-006-0025-4
14

Fujita T, Shoji S. 1999. Kinds and properties of Meister fertilizers. Di dalam Meister controlled release fertilizer-Properties and Utilization. Konno Printing Company Ltd., Japan.

15

Grant C. 2005. Policy aspects related to the use of enhanced-efficiency fertilizers: Viewpoint of the scientific community. In Proceedings, IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, pp. 28-30.

16

Guertal EA. 2000. Preplant slow‐release nitrogen fertilizers produce similar bell pepper yields as split applications of soluble fertilizer. Agron. J. 92:388-393. https://doi.org/10.2134/agronj2000.922388x

10.2134/agronj2000.922388x
17

Gwon HS, Kim GY, Choi EJ, Lee SI, Lee JS. 2019. Evaluation of greenhouse gas emission characteristics and intensity by management of water and nutrients in rice paddy soil during cropping season. J. Climate Change Res. 10:351-359. https://doi.org/10.15531/ksccr.2019.10.4.351

10.15531/KSCCR.2019.10.4.351
18

Hauck RD. 1985. Slow‐release and bioinhibitor‐amended nitrogen fertilizers. Fertilizer Technology and Use. pp. 293-322. https://doi.org/10.2136/1985.fertilizertechnology.c8

10.2136/1985.fertilizertechnology.c8
19

He T, Liu D, Yuan J, Luo J, Lindsey S, Bolan N, Ding W. 2018. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total Environ. 628:121-130. https://doi.org/10.1016/j.scitotenv.2018.02.048

10.1016/j.scitotenv.2018.02.04829428854
20

Hergert GR, Ferguson C, Wortmann C, Shapiro C, Shaver T. 2011. Enhanced efficiency fertilizers: will they enhance my fertilizer efficiency. Proceedings of the 3rd Annual Crop Production Clinics, University of Nebraska-Lincoln Extension, PA, USA.

21

Holly MA, Kleinman PJ, Bryant RB, Bjorneberg DL, Rotz CA, Baker JM, Boggess MV, Brauer DK, Chintala R, Feyereisen GW, et al. 2018. Identifying challenges and opportunities for improved nutrient management through the USDA's Dairy Agroecosystem Working Group. J. Dairy Sci. https://doi.org/101:6632-6641.

10.3168/jds.2017-1381929705411
22

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The Physical Science Basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

23

Itoh M, Sudo S, Mori S, Saito H, Yoshida T, Shiratori Y, Suga S, Yoshikawa N, Suzue Y, Mizukami H, et al. 2011. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ. 141:359-372. https://doi.org/10.1016/j.agee.2011.03.019

10.1016/j.agee.2011.03.019
24

Jang EB, Jeong HC, Gwon HS, Lee HS, Park HR, Lee JM, Oh TK, Lee SI. 2023. Effect of water management on greenhouse gas emissions from rice paddies using a slow-release fertilizer. Korean J. Environ. Agric. 42:112-120. https://doi.org/10.5338/KJEA.2023.42.2.14

10.5338/KJEA.2023.42.2.14
25

Kantheti S, Narayan R, Raju KVSN. 2013. Development of moisture cure polyurethane-urea coatings using 1,2,3-triazole core hyperbranched polyesters. J. Coat. Technol. Res. 10:609-619. https://doi.org/10.1007/s11998-013-9494-2

10.1007/s11998-013-9494-2
26

Kaur M, Singh K, Vij A, Kumar A. 2023. Recent insights into BCN nanomaterials-synthesis, properties and applications. New J. Chem. 47:2137-2160. https://doi.org/10.1016/j.pmatsci.2024.101286

10.1016/j.pmatsci.2024.101286
27

Khan HA, Naqvi SR, Mehran MT, Khoja AH, Niazi MBK, Juchelková D, Atabani A. 2021. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere. 285:131382. https://doi.org/10.1016/j.chemosphere.2021.131382

10.1016/j.chemosphere.2021.13138234329141
28

Kim GY, Lee SB, Lee JS, Choi EJ, Ryu JH. 2012. Mitigation of greenhouse gases by water management of SRI (system of rice intensification) in rice paddy fields. Korean J. Soil Sci. Fert. 45:1173-1178. https://doi.org/10.7745/KJSSF.2012.45.6.1173

10.7745/KJSSF.2012.45.6.1173
29

Kim YM, Brempong MB, Bak GR, Lee JT. 2023. Yield of kimchi cabbage and soil chemical properties following slow released fertilizer use in the highlands of Gangwon. Korean J. Soil Sci. Fert. 56:499-512. https://doi.org/10.7745/KJSSF.2023.56.4.499

10.7745/KJSSF.2023.56.4.499
30

Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B. 2006. Biodegradable polymers: past, present, and future. In ASABE/CSBE north central intersectional meeting. American Society of Agricultural and Biological Engineers.

31

Lagomarsino A, Agnelli AE, Linquist B, Adviento Borbe MA, Agnelli A, Gavina G, Ravaglia S, Ferrara RM. 2016. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere. 26:533-548. https://doi.org/10.1016/S1002-0160(15)60063-7

10.1016/S1002-0160(15)60063-7
32

Lee B, Sung J. 2023. Yield and nitrogen use efficiency of upland carrot affected by various basal fertilizers and fertigation ratios. Korean J. Soil Sci. Fert. 56:260-269. https://doi.org/10.7745/KJSSF.2023.56.3.260

10.7745/KJSSF.2023.56.3.260
33

Lee CH, Lee H, Ha BH, Kang CS, Lee YB, Kim PJ. 2007. Evaluation of fertilization effect of slow-release complex fertilizer on pepper cultivation. Korean J. Environ. Agric. 26:228-232. https://doi.org/10.5338/KJEA.2007.26.3.228

10.5338/KJEA.2007.26.3.228
34

Lee J, Min B. 2022. Evaluation of controlled release fertilizer on bulb yield, nutrient content, and storage quality of overwintering intermediate-day onions. Korean J. Soil Sci. Fert. 55:324-342. https://doi.org/10.7745/KJSSF.2022.55.4.324

10.7745/KJSSF.2022.55.4.324
35

Lee JH, Choi BR, Cho GG, Jang EK, Kim YR, Ji JH, Na HS, Lee SE, Ku HH. 2020. Effect of controlled-release coated fertilizer on yield and nitrogen use efficiency in a red pepper cultivated field. Korean J. Soil Sci. Fert. 53:519-527. https://doi.org/10.7745/KJSSF.2020.53.4.519

10.7745/KJSSF.2020.53.4.519
36

Lee KB, Park CW, Park KL, Kim JG, Lee DB, Kim JD. 2005. Nitrogen balance in paddy soil of control-release fertilizer application. Korean J. Soil Sci. Fert. 38:157-163.

37

Loper S. AL Shober. 2012. Soils & fertilizers for master gardeners: glossary of soil and fertilizer terms. SL 277. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-mg457-2009

10.32473/edis-mg457-2009
38

Lyu X, Wang T, Ma ZM, Zhao CY, Siddique KD, Ju XT. 2019. Enhanced efficient nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Research. 244:107624. http://doi.org/10.1016/j.fcr.2019.107624

10.1016/j.fcr.2019.107624
39

Ma K, Lu Y. 2011. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiology Ecology. 75:446-456. https://doi.org/10.1111/j.1574-6941.2010.01018.x

10.1111/j.1574-6941.2010.01018.x21198683
40

Manjula NG, Sarma G, Shilpa BM, Suresh Kumar K. 2022. Environmental applications of green engineered copper nanoparticles. In Phytonanotechnology. 255-276. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-19-4811-4_12

10.1007/978-981-19-4811-4_12
41

Minamikawa K, Sakai N, Yagi K. 2006. Methane emisꠓsion from paddy fields and its mitigation options on a field scale. Microbes Environment. 21:135-147. https://doi.org/10.1264/jsme2.21.135

10.1264/jsme2.21.135
42

Naz MY, Sulaiman SA, Ariwahjoedi B, Shaari KZK. 2014. Characterization of modified tapioca starch solutions and their sprays for high temperature coating applications. Sci. World J. 2014:375206. https://doi.org/10.1155/2014/375206

10.1155/2014/37520624592165PMC3925559
43

Obreza TA, Rouse RE. 2006. Long-term response of 'Hamlin'orange trees to controlled-release nitrogen fertilizers. HortScience. 41:423-426. https://doi.org/10.21273/HORTSCI.41.2.423

10.21273/HORTSCI.41.2.423
44

Oertli JJ. 1980. Controlled-release fertilizers. Fertilizer Research. 1:103-123.

10.1007/BF01073182
45

Pearl R, Reed LJ. 1920. On the rate of growth of the population of the United States since 1790 and its mathematical representation. The National Academy of Sciences. 6:275-288. https://doi.org/10.1073/pnas.6.6.275.

10.1073/pnas.6.6.27516576496PMC1084522
46

Prakash V, Rai P, Sharma NC, Singh VP, Tripathi DK, Sharma S, Sahi S. 2022. Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere. 303:134554. https://doi.org/10.1016/j.chemosphere.2022.134554

10.1016/j.chemosphere.2022.13455435405200
47

Ray I, Mridha D, Joardar M, Das A, Chowdhury NR, De A, Roychowdhury T. 2022. Alleviation of arsenic stress in plants using nanofertilizers and its extent of commercialization a systemic review. Toxic Metals Contamination. 47-71.

10.1201/9781003138907-435861216
48

Saleh K, Steinmetz D, Hemati M. 2003. Experimental study and modeling of fluidized bed coating and agglomeration. Powder Technol. 130:116-123. https://doi.org/10.1016/S0032-5910(02)00254-1

10.1016/S0032-5910(02)00254-1
49

Salman MA, Lee AY, Boustany NM. 1990. Reduced order design of active suspension control. J. Dyn. Sys. Meas. Control. 112:604-610. https://doi.org/10.1115/1.2896185

10.1115/1.2896185
50

Sartain JB, Kruse JK. 2001. Selected fertilizers used in turfgrass fertilization. Univ. Florida, IFAS. Soil and Water Sci. Dept. Circ. 1262.

51

Schreiber F, Wunderlin P, Udert K, Wells G. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Frontiers in Microbiology. 3:1-24. https://doi.org/10.3389/fmicb.2012.00372

10.3389/fmicb.2012.00372
52

Shaviv A, Mikkelsen RL. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fertilizer Research. 35:1-12.

10.1007/BF00750215
53

Shaviv A. 2001. Advances in controlled-release fertilizers. pp. 1-49.

10.1016/S0065-2113(01)71011-5
54

Shaviv A. 2005. Environmental friendly nitrogen fertilization. Sci China C Life Sci. 48:937-947. https://doi.org/10.1360/062005-285

10.1007/BF03187132
55

Shi PJ, Chen L, Hui C, Grissino-Mayer HD. 2016. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. Ecol. Model. 320:177-181. https://doi.org/10.1016/j.ecolmodel.2015.09.012

10.1016/j.ecolmodel.2015.09.012
56

Shoji S, Gandeza AT. 1992. Controlled Release Fertilizers with Polyolefin Resin Coating. Konno Printing Company. Japan.

57

Shukla S, EA Hanlon, FH Jaber, PJ Stoffella, TA Obreza, M Ozores-Hampton. 2006. Groundwater nitrogen: Behavior in flatwoods and gravel soils using organic amendments for vegetable production: CIR 1494/AE400, 8/2006. EDIS, 2006(15). https://doi.org/10.32473/edis-ae400-2006

10.32473/edis-ae400-2006
58

Sikora J, Niemiec M, Szeląg-Sikora A, Gródek-Szostak Z, Kuboń M, Komorowska M. 2020. The impact of a controlled-release fertilizer on greenhouse gas emissions and the efficiency of the production of Chinese cabbage. Energies. 13:2063. https://doi.org/10.3390/en13082063

10.3390/en13082063
59

Song YS, Choi IH, Chung BC. 2001. Effects of applying slow-release fertilizer on southern type garlic (Allium sativum L.) cultivation. Hortic. Sci. Technol. 19:471-475.

60

Syakila A, Kroeze C. 2011. The global nitrous oxide budget revisited. Greenhouse gas Measurement and Management. 1:17-26. https://doi.org/10.3763/ghgmm.2010.0007

10.3763/ghgmm.2010.0007
61

Tian C, Zhou X, Liu Q, Peng JW, Wang WM, Zhang ZH, Yang Y, Song HX, Guan CY. 2016. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). J. Zhejiang Univ. Sci. B. 17:775. https://doi.org/10.1631/jzus.B1500216

10.1631/jzus.B150021627704747PMC5064171
62

Ţolescu C, Iovu H. 2010. Polymer conditioned fertilizers. UPB Scientific Bulletin, Series B. 72.

63

Trenkel ME. 1997. Controlled-release and stabilized fertilizers in agriculture Vol.11. International fertilizer industry association, Paris, France.

64

Trenkel ME. 2010. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. International Fertilizer Industry Association (IFA) Paris, France.

65

Umar W, Czinkota I, Gulyás M, Aziz T, Hameed MK. 2022. Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. ET&I. 26:102250. https://doi.org/10.1016/j.eti.2021.102250

10.1016/j.eti.2021.102250
66

Wang S, Li X, Lu J, Hong J, Chen G, Xue X, Li J, Wei Y, Zou J, Liu G. 2013. Effects of controlled-release urea application on the growth, yield and nitrogen recovery efficiency of cotton. Agricultural Sciences. 4:33-38. https://doi.org/10.4236/as.2013.412A003

10.4236/as.2013.412A003
67

Xiao Y, Peng F, Zhang Y, Wang J, Zhuge Y, Zhanga S, Gaoa H. 2019. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. J. Clean. Prod. 234:258-274. https://doi.org/10.1016/j.jclepro.2019.06.219

10.1016/j.jclepro.2019.06.219
68

Yang Y, Zhang M, Li YC, Fan X, Geng Y. 2012. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield. Soil Sci. Soc. Am. J. 76:2307-2317. https://doi.org/10.2136/sssaj2012.0173

10.2136/sssaj2012.0173
69

Yin X, Goudriaan JAN, Lantinga EA, Vos JAN, Spiertz HJ. 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91:361-371. https://doi.org/10.1093/aob/mcg029

10.1093/aob/mcg02912547689PMC4244967
70

Yin X, Kropff MJ, McLaren G, Visperas RM. 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77:1-16. https://doi.org/10.1016/0168-1923(95)02236-Q

10.1016/0168-1923(95)02236-Q
71

Zhang X, Zang R, Li C. 2004. Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci. 166:791-797. https://doi.org/10.1016/j.plantsci.2003.11.016

10.1016/j.plantsci.2003.11.016
72

Zhao X, Ouyang W, Hao F, Lin C, Wang F, Han S, Geng X. 2013. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresour. Technol. 147:338-344. https://doi.org/10.1016/j.biortech.2013.08.042

10.1016/j.biortech.2013.08.04223999263
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 57
  • No :4
  • Pages :440-454
  • Received Date : 2024-07-24
  • Revised Date : 2024-08-28
  • Accepted Date : 2024-10-04