All Issue

2022 Vol.55, Issue 2 Preview Page

Article

31 May 2022. pp. 162-174
Abstract
References
1
Agricultural Weather Information Service. http://weather.rda.go.kr
2
Arone, J.A. and P.J. Bohlen. 1998. Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia 116:331-335. 10.1007/s00442005059428308063
3
Chantigny, M.H., P. Rochette, D.A. Angers, S. Bittman, K. Buckely, D. Masse, G. Belanger, N. Eriksen-Hamel, and M.O. Gasser. 2010. Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure. J. Environ. Qual. 39(5):1545-1553. 10.2134/jeq2009.048221043260
4
Chun, H.C., S. Lee, D.H. Gong, K.Y. Jung, H.J. Choe, Y.N. Kim, and Y.B. Lee. 2021. Differences in soil chemistry and microbial community between the upland converted from paddy and the existing soybean upland. Korean J. Soil Sci. Fert. 54:525-537. 10.7745/KJSSF.2021.54.4.525
5
Cosentino, V.R.N., P.L. Fernandez, S.A. Figueiro Aureggi, and M.A. Taboada. 2012. N2O emissions from a cultivated Mollisol: Optimal time of day for sampling and the role of soil temperature. Rev. Bras. Cienc. Solo 36:1814-1819. 10.1590/S0100-06832012000600015
6
Davidson, E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. p. 219-235. In J.E. Rogers and W.B. Whitman (eds.) Microbial production and consumption of greenhouse gases: methane, nitrous oxide and halomethanes. American Society for Microbiology, Washington, D.C., USA.
7
Dobbie, K.E. and K.A. Smith. 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biol. 9(2):204-218. 10.1046/j.1365-2486.2003.00563.x
8
Flynn, H.C. and P. Smith. 2010. Greenhouse gas budgets of crop production-current and likely future trends. p. 1-67. International Fertilizer Industry Association, Paris, France.
9
Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, and G. Myhre. 2007. Changes in atmospheric constituents and in radiative forcing, Chapter 2. p. 129-234. In S. Solomon et al. (ed.) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
10
Frolking, S.E., A.R. Mosier, and D.S. Ojima. 1998. Comparison of N2O emissions from soils at three temperate agricultural sites: Simulations of year-round measurements by four models. Nutr. Cycling Agroecosyst. 52:77-105. 10.1023/A:1009780109748
11
Gee, G.W. and J.W. Bauder. 1986. Particle size analysis. p. 383-412. In G.S. Campbell et al. (ed.) Physical and mineralogical methods. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA. 10.2136/sssabookser5.1.2ed.c15
12
Granli, T. and O.C. Bockman. 1994. Nitrogen oxide from agriculture. Norw. J. Agric. Sci. 12:7-127.
13
Hutchinson, G.L. and G.P. Livingston. 1993. Use of chamber systems to measure trace gas fluxes. Agric. Ecosyst. Effects Trace Gases Global Clim. Change 55:63-78. 10.2134/asaspecpub55.c4
14
Hyun, J.G., S.Y. Yoo, X.Y. Yang, J.E. Lee, and G.Y. Yoo. 2017. Annual variability in nitrous oxide emission from agricultural field soils. J. Clim. Change Res. 8(4):305-312. 10.15531/ksccr.2017.8.4.305
15
Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28:665-676. 10.1016/0038-0717(95)00159-X
16
Kim, D.H., Y.J. Kang, J.J. Choi, and S.I. Yun. 2020. Lettuce growth and nitrogen loss in soil treated with corn starch carbamate produced using urea. Korea J. Soil Sci. Fert. 53:13-21. 10.7745/KJSSF.2020.53.1.013
17
Kim, G.Y., B.H. Song, K.A. Roh, S.Y. Hong, B.G. Ko, K.M. Shim, and K.H. So. 2008. Evaluation of greenhouse gases emissions according to changes of soil water content, soil temperature and mineral N with different soil texture in pepper cultivation. Korean J. Soil Sci. Fert. 41:399-407.
18
Kim, S.U., C. Ruangcharus, H.H. Lee, H.J. Park, and C.O. Hong. 2018. Effect of application rate of composted animal manure on nitrous oxide emission from upland soil supporting for sweet potato. Korean J. Environ. Agric. 37(3):172-178. 10.5338/KJEA.2018.37.3.28
19
Lin, Y.W. Ding, D. Liu, T. He, G. Yoo, J. Yuan, Z. Chen, J. Fan. 2017. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biol. Biochem. 113:89-98. 10.1016/j.soilbio.2017.06.001
20
Mosier, A.R., W.J. Parton, and S. Phongpan. 1998. Longterm large N and immediate small N additions effects on trace gas fluxes in the Colorado shortgrass steppe. Biol. Fertil. Soils 28:44-50. 10.1007/s003740050461
21
Oh, T.S. and C.H. Kim. 2013. Effect of using organic fertilizer on the growth of rice and soil. Korean J. Crop Sci. 58:36-42. 10.7740/kjcs.2013.58.1.036
22
Park, S., P. Croteau, K.A. Boering, D.M. Etheridge, D. Ferretti, P.J. Fraser, K.R. Kim, P.B. Krummel, R.L. Langenfelds, T.D. van Ommen, L.P. Steele, and C.M. Trudinger. 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5:261-265. 10.1038/ngeo1421
23
Parton, W.J., A.R. Mosier, D.S. Ojima, D.W. Valentine, D.S. Schimel, K. Weier, and A.E. Kulmala. 1996. Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem. Cycles 10:401-412. 10.1029/96GB01455
24
Qin, S., Y. Wang, C. Hu, O. Oenema, X. Li, Y. Zhang, and W. Dong. 2012. Yield-scaled N2O emissions in a winter wheat-summer corn double-cropping system. Atmos. Environ. 55:240-244. 10.1016/j.atmosenv.2012.02.077
25
RDA. 2000. Methods of soil and plant analysis. Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon, Korea.
26
RDA. 2010. Method of soil chemical analysis. Rural Development Administration, National Academy of Agricultural Science, Suwon, Korea.
27
Scheer, C.R. Wassmann, K. Kienzler, N. Ibragimov, and R. Eschanov. 2008. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices. Soil Biol. Biochem. 40:290-301. 10.1016/j.soilbio.2007.08.007
28
Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. 10.1186/2193-1801-2-58725674415PMC4320215
29
Syakila, A. and C. Kroeze. 2011. The global nitrous oxide budget revisited. Greenhouse Gas Meas. Manage. 1(1):17-26. 10.3763/ghgmm.2010.0007
30
Venterea, R.T., T.J. Clough, J.A. Coulter, F. Breuillin-Sessoms. 2015. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Sci. Rep. 5:12153. 10.1038/srep1215326179972PMC4503984
31
Yang, S.H., H.J. Kang, S.C. Lee, H.J. Oh, and G.Y. Kim. 2012. Influence of N fertilization level, rainfall, and temperature on the emission of N2O in the Jeju black volcanic ash soil with soybean cultivation. Korean J. Soil Sci. Fert. 45:451-458. 10.7745/KJSSF.2012.45.3.451
32
Yun, H.B., Y. Lee, C.Y. Yu, S.M. Lee, B.K. Hyun, and Y.B. Lee. 2007. Effect of crude carbohydrate content in livestock manure compost on organic matter decomposition rate in upland soil. Korean J. Soil Sci. Fert. 40:364-368.
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 55
  • No :2
  • Pages :162-174
  • Received Date :2022. 05. 19
  • Revised Date :2022. 05. 30
  • Accepted Date : 2022. 05. 30