All Issue

2025 Vol.58, Issue 1 Preview Page

Review

28 February 2025. pp. 133-143
Abstract
References
1

Adviento-Borbe MAA, Linquist B. 2016. Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems. Geoderma 266:40-45. https://doi.org/10.1016/j.geoderma.2015.11.034

10.1016/j.geoderma.2015.11.034
2

Aronson EL, Helliker BR. 2010. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology 91:3242-3251. https://doi.org/10.1890/09-2185.1

10.1890/09-2185.121141185
3

Awad YM, Wang J, Igalavithana AD, Tsang DCW, Kim KH, Lee SS, Ok YS. 2018. Biochar effects on rice paddy: Meta-analysis. Adv. Agron. 148:1-32. https://doi.org/10.1016/bs.agron.2017.11.005

10.1016/bs.agron.2017.11.005
4

Baek N, Pia HI, Park SW, Shin ES, Lee SI, Choi WJ. 2024. Too much biochar is not better than nothing. Korean J. Soil Sci. Fertil. 57:238-244. https://doi.org/10.7745/KJSSF.2024.57.3.238

10.7745/KJSSF.2024.57.3.238
5

Banger K, Tian H, Lu C. 2012. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Change Biol. 18:3259-3267. https://doi.org/10.1111/j.1365-2486.2012.02762.x

10.1111/j.1365-2486.2012.02762.x28741830
6

Bodelier PL, Laanbroek HJ. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47:265-277. https://doi.org/10.1016/S0168-6496(03)00304-0

10.1016/S0168-6496(03)00304-019712315
7

Cai F, Feng Z, Zhu L. 2018. Effects of biochar on CH4 emission with straw application on paddy soil. J. Soils Sediments 18:599-609. https://doi.org/10.1007/s11368-017-1761-x

10.1007/s11368-017-1761-x
8

Chen D, Liu X, Bian R, Cheng K, Zhang X, Zheng J, Joseph S, Crowley D, Pan G, Li L. 2018. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis. J. Environ. Manag. 222:76-85. https://doi.org/10.1016/j.jenvman.2018.05.004

10.1016/j.jenvman.2018.05.00429804035
9

Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W. 2013. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J. Soils Sediments 13:1450-1460. https://doi.org/10.1007/s11368-013-0732-0

10.1007/s11368-013-0732-0
10

Gaihre YK, Tirol-Padre A, Wassmann R, Aquino E, Pangga GV, Sta-Cruz PC. 2011. Spatial and temporal variations in methane fluxes from irrigated lowland rice fields. Philipp. Agric. Sci. 94:335-342.

11

Han X, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies JE, Wu W. 2016. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci. Rep. 6:24731. https://doi.org/10.1038/srep24731

10.1038/srep2473127090814PMC4835783
12

Haque ANA, Uddin MK, Sulaiman MF, Amin AM, Hossain M, Solaiman ZM, Mosharrof M. 2021. Biochar with alternate wetting and drying irrigation: A potential technique for paddy soil management. Agriculture 11:367. https://doi.org/10.3390/agriculture11040367

10.3390/agriculture11040367
13

Hu A, Lu Y. 2015. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol. Biochem. 85:31-38. https://doi.org/10.1016/j.soilbio.2015.02.033

10.1016/j.soilbio.2015.02.033
14

Iboko MP, Dossou-Yovo ER, Obalum SE, Oraegbunam CJ, Diedhiou S, Brümmer C, Témé N. 2023. Paddy rice yield and greenhouse gas emissions: Any trade-off due to co-application of biochar and nitrogen fertilizer? A systematic review. Heliyon 9:e22132. https://doi.org/10.1016/j.heliyon.2023.e22132

10.1016/j.heliyon.2023.e2213238045115PMC10692810
15

Jeffery S, Verheijen FGA, Kammann C, Abalos D. 2016. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 101:251-258. https://doi.org/10.1016/j.soilbio.2016.07.021

10.1016/j.soilbio.2016.07.021
16

Kang SW, Yun JJ, Park JH, Cheong YH, Park JH, Seo DC, Cho JS. 2021. Effects of biochar and barley straw application on the rice productivity and greenhouse gas emissions of paddy field. Appl. Biol. Chem. 64:92. https://doi.org/10.1186/s13765-021-00666-7

10.1186/s13765-021-00666-7
17

Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B. 2010. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ. Sci. Technol. 44:6189-6195. https://doi.org/10.1021/es1014423

10.1021/es101442320669904
18

Kim J, Yoo G, Kim D, Ding W, Kang H. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 117-118:57-62. https://doi.org/10.1016/j.apsoil.2017.05.006

10.1016/j.apsoil.2017.05.006
19

Lee DW, Lee YN, Jeong YJ, Yun JJ, Shim JH, Jeon SH, Lee YH, Kwon SI. 2023a. Effect of biochar derived from greenhouse crop residue on lettuce growth and soil chemical properties. Korean J. Soil Sci. Fert. 56:386-397. https://doi.org/10.7745/KJSSF.2023.56.4.386

10.7745/KJSSF.2023.56.4.386
20

Lee JM, Jeong HC, Gwon HS, Lee HS, Park HR, Kim GS, Park DG, Lee SI. 2023b. Effects of biochar on methane emissions and crop yields in East Asian paddy fields: A regional scale meta-analysis. Sustainability 15:9200. https://doi.org/10.3390/su15129200

10.3390/su15129200
21

Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W. 2011. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments. 11:930-939. https://doi.org/10.1007/ s11368-011-0376-x

10.1007/s11368-011-0376-x
22

Mukherjee A, Zimmerman AR. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193:122-130. https://doi.org/10.1016/j.geoderma.2012.10.002

10.1016/j.geoderma.2012.10.002
23

Nan Q, Wang C, Wang H, Yi Q, Wu W. 2020. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 746:141351. https://doi.org/10.1016/j.scitotenv.2020.141351

10.1016/j.scitotenv.2020.14135132768791
24

Nan Q, Xin L, Qin Y, Waqas M, Wu W. 2021. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review. Biochar 3:125-134. https://doi.org/10.1007/ s42773-021-00096-0

10.1007/s42773-021-00096-0
25

Nan Q, Fang C, Cheng L, Hao W, Wu W. 2022. Elevation of NO3−N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years. Environ. Pollut. 295:118707. https://doi.org/10.1016/j.envpol.2021.118707

10.1016/j.envpol.2021.11870734923062
26

Novair SB, Cheraghi M, Faramarzi F, Lajayer BA, Senapathi V, Astatkie T, Price GW. 2023. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotox. Environ. Safe. 263:115228. https://doi.org/10.1016/j.ecoenv.2023.115228

10.1016/j.ecoenv.2023.11522837423198
27

Pia HI, Baek N, Park SW, Shin ES, Lee SI, Kim HY, Tang S, Cheng W, Kwak JH, Park HJ, Choi WJ. 2024. Luxury application of biochar does not enhance rice yield and methane mitigation: a review and data analysis. J. Soils Sediments 24: 2652-2668. https://doi.org.10.1007/s11368-024-03830-w

10.1007/s11368-024-03830-w
28

Shaukat M, Samoy-Pascual K, Maas EDvL, Ahmad A. 2019. Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice. J. Environ. Manag. 248:109242. https://doi.org/10.1016/j.jenvman.2019.07.013

10.1016/j.jenvman.2019.07.01331315074
29

Song HJ, Park SY, Chae HG, Kim PJ, Lee JG. 2024. Benefits of organic amendments on soil C stock may be offset by increased methane flux in rice paddy field. Agric. Ecosyst. Environ. 359:108742. https://doi.org/10.1016/j.agee.2023.108742

10.1016/j.agee.2023.108742
30

Spokas KA, Baker JM, Reicosky DC. 2010. Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443-452. https://doi.org/10.1007/s11104-010-0359-5

10.1007/s11104-010-0359-5
31

Sriphirom P, Chidthaisong A, Yagi K, Tripetchkul S, Towprayoon S. 2019. Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers' adoption. Soil Sci. Plant Nutr. 66:235-246. https://doi.org/10.1080/00380768.2019.1706431

10.1080/00380768.2019.1706431
32

Sui Y, Gao J, Liu C, Zhang W, Lan Y, Li S, Meng J, Xu Z, Tang L. 2016. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Sci. Total Environ. 544:203-210. https://doi.org/10.1016/j.scitotenv.2015.11.079

10.1016/j.scitotenv.2015.11.07926657366
33

Sun B, Zhao H, Lü Y, Lu F, Wang X. 2016. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. J. Integr. Agric. 15:440-450. https://doi.org/10.1016/S2095-3119(15)61063-2

10.1016/S2095-3119(15)61063-2
34

Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW. 2015. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257-262. https://doi.org/10.1016/j.chemosphere.2015.04.062

10.1016/j.chemosphere.2015.04.06225957037
35

Wang Y, Bai R, Di HJ, Mo LY, Han B, Zhang LM, He J. 2018. Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils. Front. Microbial. 9:2566. https://doi.org/10.3389/fmicb.2018.02566

10.3389/fmicb.2018.0256630483220PMC6243033
36

Wang C, Shen J, Liu J, Qin H, Yuan Q, Fan F, Hu Y, Wang J, Wei W, Li Y, Wu J. 2019. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 135:251-263. https://doi. org/10.1016/j.soilbio.2019.05.012

10.1016/j.soilbio.2019.05.012
37

Wei Z, Hoffland E, Zhuang M, Hellegers P, Cui Z. 2021. Organic inputs to reduce nitrogen export via leaching and runoff: A global meta-analysis. Environ. Pollut. 291:118176. https://doi.org/10.1016/j.envpol.2021.118176

10.1016/j.envpol.2021.11817634563844
38

Yagi K, Sriphirom P, Cha-un N, Fusuwankaya K, Chidthaisong A, Damen B, Towprayoon S. 2020. Potential and promisingness of technical options for mitigating greenhouse gas emissions from rice cultivation in Southeast Asian countries. Soil Sci. Plant Nutr. 66:37-49. https://doi.org/10.1080/00380768.2019.1683890

10.1080/00380768.2019.1683890
39

Yang S, Xiao Y, Sun X, Ding J, Jiang Z, Xu J. 2019. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmos. Environ. 200:69-77. https://doi.org/10.1016/j.atmosenv.2018.12.003

10.1016/j.atmosenv.2018.12.003
40

Yang Y, Tong T, Chen J, Liu Y, Xie S. 2020. Ammonium impacts methane oxidation and methanotrophic community in freshwater dediment. Front. Bioeng. Biotechnol. 8:250. https://doi.org/10.3389/fbioe.2020.00250

10.3389/fbioe.2020.0025032296693PMC7137091
41

Yi YS, Cho HJ, Heo JY, Lee YH. 2019. Effects of wood-derived biochar application on soil chemical properties and growth of lettuce (Lactuca sativa L.). Korean J. Soil Sci. Fert. 52:457-466. https://doi.org/10.7745/KJSSF.2019.52.4.457

10.7745/KJSSF.2019.52.4.457
42

Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139:469-475. https://doi.org/10.1016/j.agee.2010.09.003

10.1016/j.agee.2010.09.003
43

Zhang X, Xia J, Pu J, Cai C, Tyson GW, Yuan Z, Hu S. 2019a. Biochar-mediated anaerobic oxidation of methane. Environ. Sci. Technol. 53:6660-6668. https://doi.org/10.1021/acs.est.9b01345

10.1021/acs.est.9b0134531099557
44

Zhang Y, Xu X, Zhang P, Zhao L, Qiu H, Cao X. 2019b. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. Chemosphere 232:273-280. https://doi.org/10.1016/j.chemosphere.2019.05.225

10.1016/j.chemosphere.2019.05.22531154188
45

Zhao X, Pu C, Ma ST, Liu SL, Xue JF, Wang X, Wang YQ, Li SS, Lal R, Chen F, Zhang HL. 2019. Management-induced greenhouse gases emission mitigation in global rice production. Sci. Total Environ. 649:1299-1306. https://doi.org/10.1016/j.scitotenv.2018.08.392

10.1016/j.scitotenv.2018.08.39230308900
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 58
  • No :1
  • Pages :133-143
  • Received Date : 2025-01-03
  • Revised Date : 2025-01-22
  • Accepted Date : 2025-01-23