All Issue

2025 Vol.58, Issue 1 Preview Page

Short communication

28 February 2025. pp. 104-117
Abstract
References
1

ATI (Agricultural Technique Institute). 1992. Korean Soil Introduction. Agricultural Technique Institute, Suwon, Korea.

2

Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA. 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197:61-69.

10.1023/A:1004297607070
3

Benitez E, Nogales R, Campos M, Ruano F. 2006. Biochemical variability of olive-orchard soils under different management systems. Appl. Soil Ecol. 32:221-231. https://doi.org/10.1016/j.apsoil.2005.06.002

10.1016/j.apsoil.2005.06.002
4

Bernstein L. 1975. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 13:149-181. https://doi.org/10.1146/annurev.py.13.090175.001455

10.1146/annurev.py.13.090175.001455
5

Bottomley PJ, Angle JS, Weaver R. 2020. Methods of soil analysis, Part 2: Microbiological and biochemical properties. John Wiley & Sons, Inc., Hoboken, NJ, USA.

6

Casida LE, Klein DA, Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. Soc. Am. J. 47:599-603.

10.1097/00010694-196412000-00004
7

Chang CW, Dregne HE. 1955. The effect of exchangeable sodium on soil properties and growth and cation content of alfalfa and cotton. Soil Sci. Soc. Am. Proc. 19:29-35. https://doi.org/10.2136/sssaj1955.03615995001900010007x

10.2136/sssaj1955.03615995001900010007x
8

Dick WA, Cheng L, Wang PJSB. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32:1915-1919. https://doi.org/10.1016/S0038-0717(00)00166-8

10.1016/S0038-0717(00)00166-8
9

Eivazi F, Tabatabai M. 1990. Factors affecting glucosidase and galactosidase activities in soils. Soil Biol. Biochem. 22:891-897.

10.1016/0038-0717(90)90126-K
10

Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 20:601-606.

10.1016/0038-0717(88)90141-1
11

Frankenberger Jr, WT, Johanson JB. 1982. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 14:433-437. https://doi.org/10.1016/0038-0717(82)90101-8

10.1016/0038-0717(82)90101-8
12

Ge T, Nie S, Wu J, Shen J, Xiao H, Tong C, Huang D, Hong Y, Iwasaki K. 2011. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: A case study. J. Soils Sediments 11:25-36. https://doi.org/10.1007/s11368-010-0293-4

10.1007/s11368-010-0293-4
13

Gimeno-García E, Andreu V, Boluda R. 1996. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution 92:19-25. https://doi.org/10.1016/0269-7491(95)00090-9

10.1016/0269-7491(95)00090-915091407
14

Gomiero T, Paoletti MG, Pimentel D. 2008. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 27:239-254.

10.1080/07352680802225456
15

Hong SD, Lee CS, Hwang SW. 2009. Soil Fertility. Korean J. Soil Sci. Fert. 42:178-194.

16

Hong YK, Kim JW, Lee KM, Lee DJ, Lee CR, Kim SC. 2024. Selecting indicator of soil properties to correlate with crop productivity in organic farming system. Korean J. Soil Sci. Fert. 57:35-47. https://doi.org/10.7745/KJSSF.2024.57.1.035

10.7745/KJSSF.2024.57.1.035
17

Hur SO, Jung KH, Sonn YK, Ha SK, Kim JG. 2009. Determination of pedo-transfer function using the relation between soil particle distribution, organic matter and water movement in soil originated from limestone. Korean J. Soil Sci. Fert. 42:132-138.

18

Joner EJ, Jakobsen I. 1995. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol. Biochem. 27:1153-1159. https://doi.org/10.1016/0038-0717(95)00047-I

10.1016/0038-0717(95)00047-I
19

Kandeler E, Gerber H. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6:68-72.

10.1007/BF00257924
20

Kim JW, Hong YK, Lee CR, Kim SC. 2023. Comparison of physicochemical and biological soil properties in organic and conventional upland fields. Korean J. Soil Sci. Fert. 56:77-89. https://doi.org/10.7745/KJSSF.2023.56.1.077

10.7745/KJSSF.2023.56.1.077
21

Kim LY, Cho HJ, Han KH. 2003. Effects of tile drain on physicochemical properties and crop productivity of soils under newly constructed plastic film house. Korean J. Soil Sci. Fert. 36:154-162.

22

Kim YH., Kong MS, Lee EJ, Lee TG, Jung GB. 2019. Status and changes in chemical properties of upland soil from 2001 to 2017 in Korea. Korean J. Environ. Agric. 38:213-218. https://doi.org/10.5338/KJEA.2019.38.3.28

10.5338/KJEA.2019.38.3.28
23

Kim YS, Lee YM, Weon HY, Sang MK, Song JK. 2020. Comparative analysis of soil microbial communities between conventional and organic farming systems in pepper cultivation. Korean J. Organic Agric. 28:235-250. http://doi.org/10.11625/KJOA.2020.28.2.235

24

Lagomarsino A, Moscatelli MC, Di Tizio A, Mancinelli R, Grego S, Marinari S. 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecol. Indic. 9:518-527. https://doi.org/10.1016/j.ecolind.2008.07.003

10.1016/j.ecolind.2008.07.003
25

Lee CR, Kim PJ, Oh Y, Park CB, Park KL, Nam HS, Park GC. 2018. Biomass, nitrogen, and phosphorus productivities of green manure by barley and hairy vetch mixtures. Korean J. Organic Agric. 26:719-729. https://doi.org/10.11625/KJOA.2018.26.4.719

10.11625/KJOA.2018.26.4.719
26

Lee CR, Ok JH, An MS, Lee SB, Park KL, Hong SG, Kim MG, Park CB. 2017. Soil chemical properties of long-term organic cultivation upland. Korean J. Organic Agric. 25:161-170. https://doi.org/10.11625/KJOA.2017.25.1.161

10.11625/KJOA.2017.25.1.161
27

Lee YJ, Choe DH, Kim SH, Lee SM, Lee YH, Lee BM, Kim TW. 2004. Long-term changes in soil chemical properties in organic arable farming systems in Korea. Korean J. Soil Sci. Fert. 37:228-234.

28

Li J, Cooper JM, Li Y, Yang X, Zhao B. 2015. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Appl. Soil Ecol. 96: 75-87.

10.1016/j.apsoil.2015.07.001
29

Liang Y, Wu L, Clark IM, Xue K, Yang Y, Van Nostrand JD. 2015. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity. MBio 6:e240-e215. https://doi.org/10.1128/mBio.00240-15

10.1128/mBio.00240-1525852161PMC4453543
30

Loveland P, Webb J. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 70:1-18. https://doi.org/10.1016/S0167-1987(02)00139-3

10.1016/S0167-1987(02)00139-3
31

Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. 2002. Soil fertility and biodiversity in organic farming. Science 296:1694-1697. https://doi.org/10.1126/science.1071148

10.1126/science.107114812040197
32

Moeskops B, Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, DeNeve S. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol. 45:112-120.

10.1016/j.apsoil.2010.03.005
33

Mohammadi K. 2011. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. American-Eurasian J. Agric. Environ. Sci. 10:330-337.

34

Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S. 2012. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 48:743-762. https://doi.org/10.1007/s00374-012-0723-0

10.1007/s00374-012-0723-0
35

NAAS (National Academy of Agricultural Science). 2010. Methods of soil analysis. RDA, Suwon, Korea.

36

NAS (National Institute of Agricultural Science). 2017. Fertilizer recommendation for crops. Third edition. Rural Development Administration, Wanju, Korea.

37

Pimentel D, Hepperly P, Hanson J, Seidel R, Douds D. 2005. Organic and conventional farming systems: Environmental and economic issues. Report 05-1. The Rodale Institute, Kutztown, PA, USA.

38

Puissant J, Jones B, Goodall T, Mang D, Blaud A, Gweon HS, Malik A, Jones DL, Clark IM, Hirsch PR, et al. 2019. The pH optimum of soil exoenzymes adapts to long-term changes in soil pH. Soil Biol. Biochem. 138:107601. https://doi.org/10.1016/j.soilbio.2019.107601

10.1016/j.soilbio.2019.107601
39

Sarapatka B, Dudová L, Krsková M. 2004. Effect of pH and phosphate supply on acid phosphatase activity in cereal roots. Biol. Bratislava 59:127-131.

40

Schjonning P, Jensen JL, Bruun S, Jensen LS, Christensen BT, Munkholm LJ, Oelofse M, Baby S, Knudsen L. 2018. The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis. Adv. Agron. 150:35-79. https://doi.org/10.1016/bs.agron.2018.03.001

10.1016/bs.agron.2018.03.001
41

Sun B, Zhang L, Yang L, Zhang F, Norse D, Zhu Z. 2012. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 41:370-379. https://doi.org/10.1016/j.envpol.2023.121953

10.1016/j.envpol.2023.12195337307861
42

Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301-307.

10.1016/0038-0717(69)90012-1
43

Van Aarle IM, Plassard C. 2010. Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related to soil type. Soil Biol. Biochem. 42:324-330. https://doi.org/10.1016/j.soilbio.2009.11.011

10.1016/j.soilbio.2009.11.011
44

Vitousek PM, Naylor R, Crews T, David MB, Drinkwater L, Holland E, Johnes P, Katzenberger J, Martinelli L, Matson P. 2009. Nutrient imbalances in agricultural development. Science 324:1519-1520. https://doi.org/10.1126/science.1170261

10.1126/science.117026119541981
45

Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A. 1994. Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. SSSA, Madison, WI, USA.

10.2136/sssabookser5.2
46

Willer H. 1998. Okologischer landbau in Europa. SEOL, Germany. pp. 400.

47

Yamagishi J, Nakamoto T, Richner W. 2003. Stability of spatial variability of wheat and maize biomass in a small field managed under two contrasting tillage. Field Crops Res. 81:95-108. https://doi.org/10.1016/S0378-4290(02)00213-7

10.1016/S0378-4290(02)00213-7
48

Yang JE, Cho BO, Shin YO, Kim JJ. 2001. Fertility status in northeastern alpine soils of South Korea with cultivation of vegetable crops. Korean J. Soil Sci. Fert. 34:1-7.

49

Yao LX, Li GL, Tu SH, Sulewski G, He ZH. 2007. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci. Total Environ. 383:106-114. https://doi.org/10.1016/j.scitotenv.2007.05.027

10.1016/j.scitotenv.2007.05.02717572477
50

Zhao B, Chen J, Zhang J, Qin S. 2010. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma 160: 218-224.

10.1016/j.geoderma.2010.09.024
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 58
  • No :1
  • Pages :104-117
  • Received Date : 2024-10-18
  • Revised Date : 2024-12-13
  • Accepted Date : 2024-12-16