All Issue

2023 Vol.56, Issue 1 Preview Page

Original research article

28 February 2023. pp. 77-89
Abstract
References
1
Acosta-Martínez, V., L. Cruz, D. Sotomayor-Ramírez, and L. Pérez-Alegría. 2007. Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl. Soil Ecol. 35(1):35-45. 10.1016/j.apsoil.2006.05.012
2
Adetunji, A.T., F.B. Lewu, R. Mulidzi, and B. Ncube. 2017. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 17(3):794-807. 10.4067/S0718-95162017000300018
3
Alef, K. and P. Nannipieri. 1995. Methods in applied soil microbiology and biochemistry. Academic Press, London, UK.
4
Alkorta, I., A. Aizpurua, P. Riga, I. Albizu, I. Amézaga, and C. Garbisu. 2003. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 18(1):65-73. 10.1515/REVEH.2003.18.1.65
5
An, N.H., J.H. Ok, J.L. Cho, J.H. Shin, H.S. Nam, and S.C. Kim. 2015. Effects of organic matter application on soil microbial community in a newly reclaimed soil. Korean J. Org. Agric. 23(4):767-779. 10.11625/KJOA.2015.23.4.767
6
Aon, M. and A. Colaneri. 2001. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 18(3):255-270. 10.1016/S0929-1393(01)00161-5
7
Aponte, H., P. Meli, B. Butler, J. Paolini, F. Matus, C. Merino, P. Cornejo, and Y. Kuzyakov. 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ. 737:139744. 10.1016/j.scitotenv.2020.13974432512304
8
Aranda, V., C. Macci, E. Peruzzi, and G. Masciandaro. 2015. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. J. Environ. Manage. 147:278-285. 10.1016/j.jenvman.2014.08.02425245979
9
Balogh, J., K. Pintér, S. Fóti, D. Cserhalmi, M. Papp, and Z. Nagy. 2011. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol. Biochem. 43(5):1006-1013. 10.1016/j.soilbio.2011.01.017
10
Beyer, L., C. Wachendorf, D.C. Elsner, and R. Knabe. 1993. Suitability of dehydrogenase activity assay as an index of soil biological activity. Biol. Fertil. Soils 16(1):52-56. 10.1007/BF00336515
11
Blake, G.R. 1965. Bulk density. p. 374-390. In C.A. Black et al. (ed.) Methods of soil analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA. 10.2134/agronmonogr9.1.c30
12
Blanco-Canqui, H., G.W. Hergert, and R.A. Nielsen. 2015. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 79(1):212-223. 10.2136/sssaj2014.06.0252
13
Böhme, L. and F. Böhme. 2006. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation. Eur. J. Soil Biol. 42(1):1-12. 10.1016/j.ejsobi.2005.08.001
14
Bottomley, P.J., J.S. Angle, and R. Weaver. 2020. Methods of soil analysis, Part 2: Microbiological and biochemical properties. John Wiley & Sons, Inc., Hoboken, NJ, USA.
15
Brown, I.C. 1943. A rapid method of determining exchangeable hydrogen and total exchangeable bases of soils. Soil Sci. 56(5):353-358. 10.1097/00010694-194311000-00004
16
Byeon, J.E., S.H. Kim, J.H. Shim, Y.N. Lee, S.I. Kwon, and Y.H. Lee. 2022. Evaluation of soil characteristics and rice productivity in a paddy field with annual application of organic resources. Korean J. Soil Sci. Fert. 55(4):541-547. 10.7745/KJSSF.2022.55.4.541
17
Casida Jr, L., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98(6):371-376. 10.1097/00010694-196412000-00004
18
Chen, H. 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. For. Ecol. Manage. 178(3):301-310. 10.1016/S0378-1127(02)00478-4
19
Chun, H.C., S. Lee, D.H. Gong, K.Y. Jung, J.Y. Cho, Y.N. Kim, and Y.B. Lee. 2021. Difference in biochemical properties of soils with different periods of agricultural practice after conversion from paddies to uplands. Korean J. Soil Sci. Fert. 54(4):467-477. 10.7745/KJSSF.2021.54.4.467
20
Dick, R.P. 1994. Soil enzyme activities as indicators of soil quality. p. 107-124. In J.W. Doran et al. (ed.) Defining Soil Quality for a Sustainable Environment, Volume 35. Soil Science Society of America, Inc., Madison, WI, USA. 10.2136/sssaspecpub35.c7
21
Ding, L.J., J.Q. Su, G.X. Sun, J.S. Wu, and W.X. Wei. 2018. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl. Microbiol. Biotechnol. 102(4):1969-1982. 10.1007/s00253-017-8704-829274058
22
Duff, S.M., G. Sarath, and W.C. Plaxton. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 90(4):791-800. 10.1034/j.1399-3054.1994.900424.x
23
Eghball, B., D. Ginting, and J.E. Gilley. 2004. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 96(2):442-447. 10.2134/agronj2004.4420
24
Eivazi, F. and M. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 20(5):601-606. 10.1016/0038-0717(88)90141-1
25
Fueki, N., J. Lipiec, J. Kuś, U. Kotowska, and A. Nosalewicz. 2012. Difference in infiltration and macropore between organic and conventional soil management. Soil Sci. Plant Nutr. 58(1):65-69. 10.1080/00380768.2011.644759
26
Garcia, R.A., Y. Li, and C.A. Rosolem. 2013. Soil organic matter and physical attributes affected by crop rotation under no-till. Soil Sci. Soc. Am. J. 77(5):1724-1731. 10.2136/sssaj2012.0310
27
Ge, T., S. Nie, J. Wu, J. Shen, H. Xiao, C. Tong, D. Huang, Y. Hong, and K. Iwasaki. 2011. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: A case study. J. Soils Sediments 11(1):25-36. 10.1007/s11368-010-0293-4
28
Ghorbanzadeh, N., M. Mahsefat, M. Farhangi, M.K. Rad, and P. Proietti. 2020. Short-term impacts of pomace application and Pseudomonas bacteria on soil available phosphorus. Biocatal. Agric. Biotechnol. 28:101742. 10.1016/j.bcab.2020.101742
29
Gil, M., M. Carballo, and L. Calvo. 2008a. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manage. 28(8):1432-1440. 10.1016/j.wasman.2007.05.00917624756
30
Gil, M.V., L.F. Calvo, D. Blanco, and M.E. Sánchez. 2008b. Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour. Technol. 99(13):5763-5772. 10.1016/j.biortech.2007.10.01418036814
31
Gimeno-García, E., V. Andreu, and R. Boluda. 1996. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 92(1):19-25. 10.1016/0269-7491(95)00090-915091407
32
Gunapala, N., R. Venette, H. Ferris, and K. Scow. 1998. Effects of soil management history on the rate of organic matter decomposition. Soil Biol. Biochem. 30(14):1917-1927. 10.1016/S0038-0717(98)00062-5
33
Håkansson, I. and J. Lipiec. 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res. 53(2):71-85. 10.1016/S0167-1987(99)00095-1
34
Hartmann, M., B. Frey, J. Mayer, P. Mäder, and F. Widmer. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9(5):1177-1194. 10.1038/ismej.2014.21025350160PMC4409162
35
Hattab, S., I. Bougattass, R. Hassine, and B. Dridi-Al-Mohandes. 2019. Metals and micronutrients in some edible crops and their cultivation soils in eastern-central region of Tunisia: A comparison between organic and conventional farming. Food Chem. 270:293-298. 10.1016/j.foodchem.2018.07.02930174049
36
Iovieno, P., L. Morra, A. Leone, L. Pagano, and A. Alfani. 2009. Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol. Fertil. Soils 45(5):555-561. 10.1007/s00374-009-0365-z
37
Iqbal, J., R. Hu, S. Lin, R. Hatano, M. Feng, L. Lu, B. Ahamadou, and L. Du. 2009. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China. Agric., Ecosyst. Environ. 131(3-4):292-302. 10.1016/j.agee.2009.02.001
38
Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6(1):68-72. 10.1007/BF00257924
39
Konieczna, I., P. Zarnowiec, M. Kwinkowski, B. Kolesinska, J. Fraczyk, Z. Kaminski, and W. Kaca. 2012. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13(8):789-806. 10.2174/13892031280487109423305365PMC3816311
40
Krajewska, B. 2009. Ureases I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal. B: Enzym. 59(1-3):9-21. 10.1016/j.molcatb.2009.01.003
41
Lagomarsino, A., M.C. Moscatelli, A. Di Tizio, R. Mancinelli, S. Grego, and S. Marinari. 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecol. Indic. 9(3):518-527. 10.1016/j.ecolind.2008.07.003
42
Lee, C.R., J.H. Ok, M.S. An, S.B. Lee, K.L. Park, S.G. Hong, M.G. Kim, and C.B. Park. 2017. Soil chemical properties of long-term organic cultivation upland. Korean J. Org. Agric. 25(1):161-170. 10.11625/KJOA.2017.25.1.161
43
Lee, C.R., S.G. Hong, S.B. Lee, C.B. Park, M.G. Kim, J.H. Kim, and K.L. Park. 2015. Physico-chemical properties of organically cultivated upland soils. Korean J. Org. Agric. 23(4):875-886. 10.11625/KJOA.2015.23.4.875
44
Lee, C.R., Y. Oh, J.A. Jung, S.M. Lee, and N.H. An. 2020. Residual effects of organic materials on N supply to Chinese cabbage and soil under continuous cultivation. Korean J. Soil Sci. Fert. 53(4):538-548. 10.7745/KJSSF.2020.53.4.538
45
Leskovar, D. and Y.A. Othman. 2018. Organic and conventional farming differentially influenced soil respiration, physiology, growth and head quality of artichoke cultivars. J. Soil Sci. Plant Nutr. 18(3):865-880. 10.4067/S0718-95162018005002502
46
Li, J., J.M. Cooper, Y. Li, X. Yang, and B. Zhao. 2015. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Appl. Soil Ecol. 96:75-87. 10.1016/j.apsoil.2015.07.001
47
Liu, K.L., Y.Z. Li, L.J. Zhou, Y. Chen, Q. Huang, X. Yu, and D. Li. 2018. Comparison of crop productivity and soil microbial activity among different fertilization patterns in red upland and paddy soils. Acta Ecol. Sin. 38(3):262-267. 10.1016/j.chnaes.2017.08.003
48
Liu, X., W. Meng, G. Liang, K. Li, W. Xu, L. Huang, and J. Yan. 2014. Available phosphorus in forest soil increases with soil nitrogen but not total phosphorus: Evidence from subtropical forests and a pot experiment. PLoS ONE 9(2):e88070. 10.1371/journal.pone.008807024505379PMC3913721
49
Lupatini, M., G.W. Korthals, M. de Hollander, T.K. Janssens, and E.E. Kuramae. 2017. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7:2064. 10.3389/fmicb.2016.0206428101080PMC5209367
50
Lupwayi, N.Z., D.A. Kanashiro, A.H. Eastman, and X. Hao. 2018. Soil phospholipid fatty acid biomarkers and β-glucosidase activities after long-term manure and fertilizer N applications. Soil Sci. Soc. Am. J. 82(2):343-353. 10.2136/sssaj2017.09.0340
51
Mäder, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296(5573):1694-1697. 10.1126/science.107114812040197
52
Mobley, H. and R. Hausinger. 1989. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 53(1):85-108. 10.1128/mr.53.1.85-108.19892651866PMC372718
53
Mondelaers, K., J. Aertsens, and G. Van Huylenbroeck. 2009. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 111(2009):1098-1119. 10.1108/00070700910992925
54
Moreira, A., G. Sfredo, L. Moraes, and N. Fageria. 2015. Lime and cattle manure in soil fertility and soybean grain yield cultivated in tropical soil. Commun. Soil Sci. Plant Anal. 46(9):1157-1169. 10.1080/00103624.2015.1033542
55
Neves C.S.V.J., C. Feller, M.F. Guimarães, C. Medina, J. Tavares Filho, and M. Fortier. 2003. Soil bulk density and porosity of homogeneous morphological units identified by the cropping profile method in clayey Oxisols in Brazil. Soil Tillage Res. 71(2):109-119. 10.1016/S0167-1987(03)00023-0
56
Ozlu, E., S.S. Sandhu, S. Kumar, and F.J. Arriaga. 2019. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 9(1):1-11. 10.1038/s41598-019-48207-z31409857PMC6692313
57
Puissant, J., B. Jones, T. Goodall, D. Mang, A. Blaud, H.S. Gweon, A. Malik, D.L. Jones, I.M. Clark, and P.R. Hirsch. 2019. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 138:107601. 10.1016/j.soilbio.2019.107601
58
Reboredo, F., M. Simões, C. Jorge, M. Mancuso, J. Martinez, M. Guerra, J.C. Ramalho, M.F. Pessoa, and F. Lidon. 2019. Metal content in edible crops and agricultural soils due to intensive use of fertilizers and pesticides in Terras da Costa de Caparica (Portugal). Environ. Sci. Pollut. Res. 26(3):2512-2522. 10.1007/s11356-018-3625-330471064
59
Reddy, B.S. 2010. Organic farming: Status, issues and prospects - A review. Agric. Econ. Res. Rev. 23:343-358.
60
Reganold, J.P., L.F. Elliott, and Y.L. Unger. 1987. Long-term effects of organic and conventional farming on soil erosion. Nature 330(6146):370-372. 10.1038/330370a0
61
Ross, D.J. 1971. Some factors influencing the estimation of dehydrogenase activities of some soils under pasture. Soil Biol. Biochem. 3(2):97-110. 10.1016/0038-0717(71)90002-2
62
Ruehlmann, J. and M. Körschens. 2009. Calculating the effect of soil organic matter concentration on soil bulk density. Soil Sci. Soc. Am. J. 73(3):876-885. 10.2136/sssaj2007.0149
63
Seitz, S., P. Goebes, V.L. Puerta, E.I.P. Pereira, R. Wittwer, J. Six, M.G. van der Heijden, and T. Scholten. 2019. Conservation tillage and organic farming reduce soil erosion. Agron. Sustainable Dev. 39(1):1-10. 10.1007/s13593-018-0545-z
64
Seufert, V., N. Ramankutty, and T. Mayerhofer. 2017. What is this thing called organic? - How organic farming is codified in regulations. Food Policy. 68:10-20. 10.1016/j.foodpol.2016.12.009
65
Singh, J., P. Yadav, A.K. Pal, and V. Mishra. 2020. Water pollutants: Origin and status. p. 5-20. In D. Pooja et al. (ed.) Sensors in water pollutants monitoring: Role of material. Springer, Singapore. 10.1007/978-981-15-0671-0_2
66
Sohn, S., Y. Kim, and Y. Park. 1999. Site-and cropspecific fertilization recommendation by soil nitrate testing for organic farming. Daesan J. 7:43-56.
67
Srivastav, A.L. 2020. Chapter 6 - Chemical fertilizers and pesticides: Role in groundwater contamination. p. 143-159. In M.N.V. Prasad (ed.) Agrochemicals Detection, Treatment and Remediation. Elsevier, Oxford, UK. 10.1016/B978-0-08-103017-2.00006-4
68
Srivastava, R., D. Roseti, and A. Sharma. 2007. The evaluation of microbial diversity in a vegetable based cropping system under organic farming practices. Appl. Soil Ecol. 36(2-3):116-123. 10.1016/j.apsoil.2007.01.008
69
Sun, B., L. Zhang, L. Yang, F. Zhang, D. Norse, and Z. Zhu. 2012. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 41(4):370-379. 10.1007/s13280-012-0249-622311715PMC3393061
70
Tabatabai, M.A. and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1(4):301-307. 10.1016/0038-0717(69)90012-1
71
Tadesse, T., N. Dechassa, W. Bayu, and S. Gebeyehu. 2013. Effects of farmyard manure and inorganic fertilizer application on soil physico-chemical properties and nutrient balance in rain-fed lowland rice ecosystem. Am. J. Plant Sci. 4:309-316. 10.4236/ajps.2013.42041
72
Tang, X., S. Liu, G. Zhou, D. Zhang, and C. Zhou. 2006. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biol. 12(3):546-560. 10.1111/j.1365-2486.2006.01109.x
73
Tate, K. 1984. The biological transformation of P in soil. Plant Soil 76:245-256. 10.1007/BF02205584
74
Tong, C., H. Xiao, G. Tang, H. Wang, T. Huang, H. Xia, S.J. Keith, Y. Li, S. Liu, and J. Wu. 2009. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Tillage Res. 106(1):8-14. 10.1016/j.still.2009.09.003
75
Tripathi, S., P. Srivastava, R.S. Devi, and R. Bhadouria. 2020. Chapter 2 - Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. p. 25-54. In M.N.V. Prasad (ed.) Agrochemicals Detection, Treatment and Remediation. Elsevier, Oxford, UK. 10.1016/B978-0-08-103017-2.00002-7
76
Turner, B.L., D.W. Hopkins, P.M. Haygarth, and N. Ostle. 2002. β-Glucosidase activity in pasture soils. Appl. Soil Ecol. 20(2):157-162. 10.1016/S0929-1393(02)00020-3
77
Vitousek, P.M., R. Naylor, T. Crews, M.B. David, L. Drinkwater, E. Holland, P. Johnes, J. Katzenberger, L. Martinelli, and P. Matson. 2009. Nutrient imbalances in agricultural development. Science 324(5934):1519-1520. 10.1126/science.117026119541981
78
Wade, J., C. Li, K. Vollbracht, D.G. Hooper, S.A. Wills, and A.J. Margenot. 2021. Prescribed pH for soil β-glucosidase and phosphomonoesterase do not reflect pH optima. Geoderma 401:115161. 10.1016/j.geoderma.2021.115161
79
Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29-38. 10.1097/00010694-193401000-00003
80
Wang, B., J. Li, Y. Ren, J. Xin, X. Hao, Y. Ma, and X. Ma. 2015. Validation of a soil phosphorus accumulation model in the wheat-maize rotation production areas of China. Field Crops Res. 178:42-48. 10.1016/j.fcr.2015.03.007
81
Whalen, J.K., C. Chang, G.W. Clayton, and J.P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64(3):962-966. 10.2136/sssaj2000.643962x
82
Williams, D.M., H. Blanco-Canqui, C.A. Francis, and T.D. Galusha. 2017. Organic farming and soil physical properties: An assessment after 40 years. Agron. J. 109(2):600-609. 10.2134/agronj2016.06.0372
83
Włodarczyk, T., W. Stępniewski, and M. Brzezińska. 2002. Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol. Fertil. Soils 36(3):200-206. 10.1007/s00374-002-0513-1
84
Wortman, S.E., T.D. Galusha, S.C. Mason, and C.A. Francis. 2012. Soil fertility and crop yields in long-term organic and conventional cropping systems in Eastern Nebraska. Renewable Agric. Food Syst. 27(3):200-216. 10.1017/S1742170511000317
85
Wu, L., H. Ma, Q. Zhao, S. Zhang, W. Wei, and X. Ding. 2020. Changes in soil bacterial community and enzyme activity under five years straw returning in paddy soil. Eur. J. Soil Biol. 2020(100):103215. 10.1016/j.ejsobi.2020.103215
86
Yao, L.X., G.L. Li, S.H. Tu, G. Sulewski, and Z.H. He. 2007. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci. Total Environ. 383(1-3):106-114. 10.1016/j.scitotenv.2007.05.02717572477
87
Yi, P.H., S.G. Han, G. Selvakumar, S.E. Lee, D.H. Jung, and I.B. Lee. 2020. Analysis of soil nutrient balance, soil enzymatic activity and growth characteristics of facility-grown red pepper (Capsicum annuum L.) with incorporation of hairy vetch. Korean J. Soil Sci. Fert. 53(1):1-12. 10.7745/KJSSF.2020.53.1.001
88
Zheng, F., D. Zhu, M. Giles, T. Daniell, R. Neilson, Y.G. Zhu, and X.R. Yang. 2019. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Sci. Total Environ. 680:70-78. 10.1016/j.scitotenv.2019.04.38431100670
89
Zhong, W.H., Z.C. Cai, and H. Zhang. 2007. Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere 17(4):419-428. 10.1016/S1002-0160(07)60051-4
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :1
  • Pages :77-89
  • Received Date : 2022-12-05
  • Revised Date : 2022-12-26
  • Accepted Date : 2022-12-29