All Issue

2022 Vol.55, Issue 4 Preview Page

Article

30 November 2022. pp. 455-463
Abstract
References
1
Abbruzzini, T.F., C.A. Davies, F.H. Toledo, and C.E.P. Cerri. 2019. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. J. Environ. Manage. 252:109638. 10.1016/j.jenvman.2019.10963831586743
2
Cayuela, M.L., M.A. Sánchez-Monedero, A. Roig, K. Hanley, A. Enders, and J. Lehmann. 2013. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 3(1):1-7. 10.1038/srep0173223615819PMC3635057
3
IPCC. 1996. Revised 1996 IPCC guidelines for national greenhouse gas inventories: Reference manual (Volume 3). Intergovernmental Panel on Climate Change, Hadley Centre, Bracknell, UK.
4
IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
5
Jang, J.E., G.J. Lim, J.S. Park, J.M. Shim, C.S. Kang, and S.S. Hong. 2018. Application effects of biochar derived from pruned stems of pear tree on growth of crops and soil physico-chemical properties. J. Korea Org. Resour. Recycl. Assoc. 26:11-19.
6
Kang, S.K., W.J. Lee, H.G. Jeong, J.H. Park, J.H. Lee, J.J. Yun, S.Y. Kim, D.C. Seo, and J.S. Cho. 2018. Effect of application levels of inorganic fertilizer with biochar on corn growth in an upland field. Korean J. Soil Sci. Fert. 51:547-554. 10.7745/KJSSF.2018.51.4.547
7
Kim, Y.S., K.H. Kim, J.W. Han, T.G. Jeong, M.J. Kim, and I.J. Kim. 2022. Effect of rice hull-derived biochar application on watermelon growth, and soil physico-chemical properties under greenhouse. Korean J. Soil Sci. Fert. 55:175-184. 10.7745/KJSSF.2022.55.3.175
8
Kwon, P.S. and S.J. Kim. 2017. Scenario analysis for the achievement of the 2030 national greenhouse gas reduction goal in the Korean electricity sector. J. Environ. Policy Adm. 25:129-163. 10.15301/jepa.2017.25.2.129
9
Lee, J.H., H.J. Lee, S.K. Kim, S.G. Lee, H.S. Lee, and C.S. Choi. 2017. Development of growth models as affected by cultivation season and transplanting date and estimation of prediction yield in kimchi cabbage. J. Bio-Env. Con. 26:235-241. 10.12791/KSBEC.2017.26.4.235
10
Lee, J.M., D.G. Park, S.S. Kang, E.J. Choi, H.S. Gwon, H.S. Lee, and S.I. Lee. 2022. Short-term effect of biochar on soil organic carbon improvement and nitrous oxide emission reduction according to different soil characteristics in agricultural land: A laboratory experiment. Agronomy 12:1879. 10.3390/agronomy12081879
11
Lee, S.I., G.Y. Kim, E.J. Choi, J.S. Lee, and H.C. Jung. 2018. Reduction of carbon dioxide and nitrous oxide emissions through various biochars application in the upland. J. Korea Org. Resour. Recycl. Assoc. 26:11-18.
12
Lee, S.I., G.Y. Kim, E.J. Choi, J.S. Lee, H.S. Gwon, and J.D. Shin. 2020. Effect of biochar application on nitrous oxide emission in the soil with different types of nitrogen fertilizer during corn (Zea may) cultivation. Korean J. Environ. Agric. 39:397-304. 10.5338/KJEA.2020.39.4.35
13
Lehmann, J. and S. Joseph. 2015. Biochar for environmental management: An introduction. p. 1-13. In J. Lehmann and S. Joseph (ed.) Biochar for environmental management: Science, technology and implementation. Routledge, London, UK. 10.4324/9780203762264
14
Li, B., C.H. Fan, H. Zhang, Z. Chen, L.Y. Sun, and Z.Q. Xiong. 2015. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 100:10-19 10.1016/j.atmosenv.2014.10.034
15
Lyu, H., S. Xu, Y. Liu, W. Zhang, Q. Duan, M. Zhu, and J. Tang. 2022. Chapter 20 - Effect of biochar on the emission of greenhouse gas in farmland. p. 251-262. In D.C.W. Tsang and Y.S. Ok (ed.) Biochar in agriculture for achieving sustainable development goals. Academic Press, Cambridge, Massachusetts, USA. 10.1016/B978-0-323-85343-9.00019-7
16
NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
17
NIAST. 2017. Recommended rate of fertilizer on crops. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
18
Regina, K., J. Kaseva, and M. Esala. 2013. Emissions of nitrous oxide from boreal agricultural mineral soils-statistical models based on measurements. Agric., Ecosyst. Environ. 164:131-136. 10.1016/j.agee.2012.09.013
19
Seo, J.H., H.J. Lee, I.B. Hur, S.J. Kim, C.K. Kim, and H.S. Jo. 2000. Comparisons of soil nitrate and corn nitrogen uptake according to winter forage rye and green manure hairy vetch. J. Kor. Grassl. Forage Sci. 20:199-206.
20
Wacal, C., N. Ogata, D. Basalirwa, T. Handa, D. Sasagawa, R. Acidri, T. Ishigaki, M. Kato, T. Masunaga, and S. Yamamoto. 2019. Growth, seed yield, mineral nutrients and soil properties of sesame (Sesamum indicum L.) as influenced by biochar addition on upland field converted from paddy. Agronomy 9:55. 10.3390/agronomy9020055
21
Wang, L., K. Yang, C. Gao, and L. Zhu. 2020. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Sci. Total Environ. 747:141265. 10.1016/j.scitotenv.2020.14126532777505
22
Wang, Y. and R. Liu. 2018. Improvement of acidic soil properties by biochar from fast pyrolysis. Environ. Prog. Sustainable Energy 37:1743-1749. 10.1002/ep.12825
23
Woolf, D. and J. Lehmann. 2012. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111(1-3):83-95. 10.1007/s10533-012-9764-6
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 55
  • No :4
  • Pages :455-463
  • Received Date :2022. 11. 02
  • Revised Date :2022. 11. 17
  • Accepted Date : 2022. 11. 18