All Issue

2017 Vol.50, Issue 6 Preview Page
December 2017. pp. 634-643
Abstract
References
1
Arshad, M.A., M. Schnitzer, D.A. Anger, and J.A. Ripmeester. 1990. Effects of till vs no-till on the quality of soil organic matter. Soil Bio. Biochem. 22:595-599.
2
Bayer, C., F.D. Costa, G.M. Pedroso, T. Zschornack, E.S. Camargo, M.A. de Lima, R.T.S. Frigheto, J. Gomes, E. Marcolin, and V.R.M. Macedo. 2014. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a humid subtropical climate. Field Crops Res. 162:60-69.
3
Beare, M.H., P.F. Hendrix, and D.C. Colman. 1994. Water-stable aggregates and organic matter fractions in conventional- and no-tillage soil. Soil Sci. Soc. Am. J. 58:777-786.
4
Bhattacharyya, R., M.D. Tuti, S. Kundu, J.K. Bisht, J.C. Bhatt. 2012. Conservation tillage impacts on soil aggregation and carbon pools in a sandy clay loam soil of Indian Himalayas. Soil Sci. Soc. Am. J. 76:617-627.
5
Braunack, M.V. 1995. Effect of aggregate size and soil water content on emergence of soybean (Glycine max, L. Merr.) and maize (Zea mays, L.). Soil Tillage Res. 33:149-161.
6
Carman, K. 1997. Effect of different tillage systems on soil properties and wheat yield in middle Anatolia. Soil Tillage Res. 40:201-207.
7
Cho, H.-J., I.S. Jo, B.K. Hyun, and J.S. Shin. 1995. Effects of different tillage practices on changes of soil physical properties and growth of direct seeding rice. Korean J. Soil Sci. Fert. 28:301-305.
8
Davidson, J.M., F. Gray, and D.I. Pinson. 1967. Changes in organic matter and bulk density with depth under two cropping systems. Agron. J. 59:375-378.
9
Ding, G., J.M. Novak, D. Amarasiriwardena, P.G. Hunt, and B. Xing. 2002. Soil organic matter characteristics as affected by tillage management. Soil Sci. Soc. Am. J. 66:421-429.
10
Gàl, A., T.J. Vyn, E. Micheli, E.J. Kladivko, and W.W. McFee. 2007. Soil carbon and nitrogen accumulation with long-term no-till versus mildboard plowing overestimated with tilled-zone sampling depth. Soil Tillage Res. 96:42-51.
11
Hill, R.L. and R.M. Cruse, 1985. Tillage effects on bulk density and soil strength of two mollisols. Soil Sci. Soc. Am. J. 49:1270-1273.
12
Hong Y.G., S.J. Gwon, S.H. Jo, B.R. Go, and N.G. Oh. Study on the no-tillage cultivation of paddy rice. Res. Rept. J.B. Agric. Res. 1998. pp.198-203.
13
Hyun, B.K., S.J. Jung, K.C. Song, Y.K. Sonn, and W.K. Jung. 2007. Relationship between soil water-stable aggregates and physico-chemical soil properties. Korean J. Soil Sci. Fert. 40:57-63.
14
International Rice Research Institute (IRRI). 1987. Physical Measurements in Flooded Rice Soils. pp. 65.
15
Jeon, W.T., K.-Y. Seong, M.-T. Kim, G.-J. Oh, I.-S. Oh, and U.-G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-135.
16
Kern, J.S. and M.G. Johnson. 1993. Conventional tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 57:200-210.
17
Kim, S.J., J.S. Choi, S.G. Gang, J.W. Park, and W.H. Yang. 2017. Effects of tillage and cultivation methods on methane emission. Korean Crop Sci. 2:71 (Abstr).
18
Ko, J.Y., J.S. Lee, M.T. Kim, H.W. Kang, U.G. Kang, D.C. Lee, Y.G. Shin. K.Y. Kim, and K.B. Lee. 2002. Effects of cultural practices on methane emission in tillage and no-tillage practice from rice paddy fields. Korean J. Soil Sci. Fert. 35:216-222.
19
Kushwaha, C.P., S.K. Tripathi, and K.P. Singh. 2001. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl. Soil Ecol. 16:229-241.
20
Li, D.M., M.Q. Liu, Y.H. Cheng, D. Wang, J.T. Qin, J.G. Jiao, H.X. Li, and F. Hu. 2011. Methane emissions from double-rice cropping system under conventional and no tillage in southeast china. Soil Tillage Res. 113(2):77-81.
21
Lu, G., K.-i. Sakagami, H. Tanaka, and R. Hamada. 1998. Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use. Soil Sci. Plant Nutr. 44:147-155.
22
Mari, I.A., J. Changying, N. Leghari, F.A. Chandio, C. Arslan, and M. Hassan. 2015. Impact of tillage operation on soil physical, mechanical and rhelogical properties of paddy soil. Bulg. J. Agric. Sci. 21:940-946.
23
Myers, H.E. 1937. Physio-chemical reactions between organic and inorganic soil colloids as related to aggregate formation. Soil Sci. 44:331-357.
24
NICS. 2010. Core technology for direct-seeded rice cultivation. National Institute of Crop Science, RDA, Milyang, Korea.
25
Park, J.N., S.S. Lee, H.J. Kim, G.Y. Yoo, and Y.S. Ok. 2014. Effects of tillage methods on aggregate stability and organic carbon in soils. Agric. J. Life Environ. Sci. 26:48-51.
26
Peele, T.C. and O.W. Beale. 1943. Microbial activity and soil aggregate formation during the decomposition of organic matter. Soil Sci. Soc. Proc. Proceeding. 8:254-257.
27
Puget, P., C. Chenu, and J. Balesdent. 1995. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 46:449-459.
28
RDA. 2013. General publications of Agricultural Technology; Direct seeding.
29
RDA. 2015. Nongsaro: Agricultural Technology Information. http://www.nongsaro.go.kr.
30
Rovira A. and Greacen E. 1957. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. J. Agric. Res. 8:659-673.
31
Seo, M.C., K.Y. Seong, H.S. Cho, M.T. Kim, T.S. Park, and H.W. Kang. 2014. Physicochemical properties of soils as affected by minimum tillage and direct seeding cultivation on dry rice paddy. Korean J. Soil Sci. Fert. 47:8-15.
32
Six, J., K. Paystian, E.T. Elliott, and C. Combrink. 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64:681-689.
33
Six, J., K. Paystian. E.T. Elliott, K. Paustian, and J.W. Doran. 1998. Aggregetion and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62:1367-1377.
34
Wright, A.L. and F.M. Hons. 2004. Soil aggregation and carbon and nitrogen storage under soybean cropping sequences. Soil Sci. Soc. Am. J. 68:507-513.
35
Yang, S.K., Y.W. Seo, S.K. Kim, B.H. Kim, H.K. Kim, H.W. Kim, K.J. Choi, Y.S. Han, and W.J. Jung, 2014. Changes in physical properties especially, three phases, bulk density, porosity and correlations under no-tillage clay loam soil with ridge cultivation of rain proof plastic house. Korean J. Soil Sci. Fert. 47:225-234.
36
Zhang, X., A. Zhu, W. Yang, X. Xin, J. Zhang, and S. Ge. 2017. Relationships between soil macroaggregation and humic carbon in a sandy loam soil following conservation tillage. J. Soils Sediments DOI: 10.1007/s11368- 017-1809-y.
37
Zhang, Z.-S., C.-G. Cao, L.-J. Guo, and C.-F. Li. 2016. Emissions of CH4 and CO2 from paddy fields as affected by tillage practices and crop residues in central china. Paddy Water Environ. 14(1):85-92.
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 50
  • No :6
  • Pages :634-643
  • Received Date : 2017-11-07
  • Revised Date : 2017-11-17
  • Accepted Date : 2017-11-17