All Issue

2022 Vol.55, Issue 4 Preview Page

Original research article

30 November 2022. pp. 443-454
Abstract
References
1
Awasthi, M.K., A. Selvam, K.M. Lai, and J.W.C. Wong. 2017. Critical evaluation of postconsumption food waste composting employing thermophilic bacterial consortium. Bioresour. Technol. 245:665-672. 10.1016/j.biortech.2017.09.01428917101
2
Awasthi, M.K., Y. Duan, T. Liu, S.K. Awasthi, and Z. Zhang. 2020. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting. Bioresour. Technol. 303:122952. 10.1016/j.biortech.2020.12295232050126
3
Cao, L., I.K.M. Yu, D.C.W. Tsang, S. Zhang, Y.S. Ok, E.E. Kwon, H. Song, and C.S. Poon. 2018. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresour. Technol. 267:242-248. 10.1016/j.biortech.2018.07.04830025320
4
Chan, M.T., A. Selvam, and J.W.C. Wong. 2016. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour. Technol. 200:838-844. 10.1016/j.biortech.2015.10.09326590758
5
Chang, J.I. and Y.J. Chen. 2010. Effects of bulking agents on food waste composting. Bioresour. Technol. 101(15):5917-5924. 10.1016/j.biortech.2010.02.04220385493
6
Chen, J., D. Hou, W. Pang, E.E. Nowar, J.K. Tomberlin, R. Hu, H. Chen, J. Xie, J. Zhang, Z. Yu, and Q. Li. 2019. Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly. Sci. Total Environ. 697:133840. 10.1016/j.scitotenv.2019.13384031487598
7
Chen, W., X. Liao, Y. Wu, J.B. Liang, J. Mi, J. Huang, H. Zhang, Y. Wu, Z. Qiao, X. Li, and Y. Wang. 2017. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manage. 61:506-515. 10.1016/j.wasman.2017.01.01428117129
8
Chen, Y.X., X.D. Huang, Z.Y. Han, X. Huang, B. Hu, D.Z. Shi, and W.X. Wu. 2010. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78:1177-1181. 10.1016/j.chemosphere.2009.12.02920060567
9
Chi, C.P., S. Chu, B. Wang, D. Zhang, Y. Zhi, X. Yang, and P. Zhou. 2020. Dynamic bacterial assembly driven by streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting. Bioresour. Technol. 313:123692. 10.1016/j.biortech.2020.12369232570080
10
Duan, Y., J. Yang, Y. Guo, X. Wu, Y. Tian, H. Li, and M.K. Awasthi. 2021. Pollution control in biochar-driven clean composting: Emphasize on heavy metal passivation and gaseous emissions mitigation. J. Hazard Mater. 420:126635. 10.1016/j.jhazmat.2021.12663534329093
11
Han, Z., D. Sun, H. Wang, R. Li, Z. Bao, and F. Qi. 2018. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant. Bioresour. Technol. 270:457-466. 10.1016/j.biortech.2018.09.04830245315
12
He, Z., H. Lin, J. Hao, X. Kong, K. Tian, Z. Bei, and X. Tian. 2018. Impact of vermiculite on ammonia emissions and organic matter decomposition of food waste during composting. Bioresour. Technol. 263:548-554. 10.1016/j.biortech.2018.05.03129778793
13
Hwang, H.Y., S.H. Kim, J.H. Shim, and S.J. Park. 2020a. Composting process and gas emissions during food waste composting under the effect of different additives. Sustainability 12:7811. 10.3390/su12187811
14
Hwang, H.Y., S.H. Kim, M.S. Kim, S.J. Park, and C.H. Lee. 2020b. Co-composting of chicken manure with organic wastes: Characterization of gases emissions and compost quality. Appl. Biol. Chem. 63:1-10. 10.1186/s13765-019-0483-8
15
Hwang, H.Y., S.M. Lee, C.R. Lee, and N.H. An. 2022. Addition of earthworm castings reduces gas emissions and improves compost quality in kitchen waste composting. Appl. Biol. Chem. 65:27. 10.1186/s13765-022-00692-z
16
IPCC. 2007. Technical summary. In: S. Solomon et al. (ed.) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
17
Jäckel, U., K. Thummes, and P. Kämpfer. 2005. Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 52:175-184. 10.1016/j.femsec.2004.11.00316329904
18
Jeong, S.T., G.W. Kim, H.Y. Hwang, P.J. Kim, and S.Y. Kim. 2018. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 613-614:115-122. 10.1016/j.scitotenv.2017.09.00128910713
19
Jiang, T., X. Ma, J. Yang, Q. Tang, Z. Yi, M. Chen, and G. Li. 2016. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting. Bioresour. Technol. 217:219-226. 10.1016/j.biortech.2016.02.04626927235
20
Li, H., T. Zhang, D.C.W. Tsang, and G. Li. 2020. Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere 248:125927. 10.1016/j.chemosphere.2020.12592732014634
21
Liu, Y., R. Ma, D. Li, C. Qi, L. Han, M. Chen, F. Fu, and J. Yuan. 2020. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting. J. Environ. Manage. 267:110649. 10.1016/j.jenvman.2020.11064932364133
22
Luo, Y.M., D.G. Xu, and G.X. Li. 2013. Effect of superphosphate as additive on nitrogen and carbon losses during pig manure composting. Appl. Mech. Mater. 2301:295-298. 10.4028/www.scientific.net/AMM.295-298.1675
23
Mehta, C.M., U. Palni, I.H. Franke-Whittle, and A.K. Sharma. 2014. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manage. 34:607-622. 10.1016/j.wasman.2013.11.01224373678
24
MOE. 2019. Food waste generation and treatment. Ministry of Environment, Seoul, Korea.
25
Paśmionka, I.B., K. Bulski, P. Herbut, E. Boligłowa, F.M.C. Vieira, G. Bonassa, M. Bortoli, and M.C. de Prá. 2021. Toxic effect of ammonium nitrogen on the nitrification process and acclimatisation of nitrifying bacteria to high concentrations of NH4-N in wastewater. Energies 14:5329. 10.3390/en14175329
26
Ravindran, B., M.K. Awasthi, N. Karmegam, S.W. Chang, D.K. Chaudhary, A. Selvam, D.D. Nguyen, A.R. Milon, and G.M. Ramanujam. 2022. Co-composting of food waste and swine manure augmenting biochar and salts: Nutrient dynamics, gaseous emissions and microbial activity. Bioresour. Technol. 344(15):126300. 10.1016/j.biortech.2021.12630034752882
27
RDA. 2012. Quality control and utilization of livestock manure. National Institute of Agricultural Sciences, RDA, Wanju, Korea.
28
Shen, Y., L. Ren, G. Li, T. Chen, and R. Guo. 2011. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Manage. 31:33-38. 10.1016/j.wasman.2010.08.01920888749
29
Wang, K., Y. Wu, W. Li, C. Wu, and Z. Chen. 2018a. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting. Bioresour. Technol. 251:320-326. 10.1016/j.biortech.2017.12.07729289876
30
Wang, Q., M.K. Awasthi, X. Ren, J. Zhao, R. Li, Z. Wang, M. Wang, H. Chen, and Z. Zhang. 2018b. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manage. 74:221-230. 10.1016/j.wasman.2018.01.01529358021
31
Wang, W., L. Zhang, and X.Y. Sun. 2021. Improvement of two-stage composting of green waste by addition of eggshell waste and rice husks. Bioresour. Technol. 320:124388. 10.1016/j.biortech.2020.12438833197737
32
Wang, X., A. Selvam, M.T. Chan, and J.W.C. Wong. 2013. Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresour. Technol. 147:17-22. 10.1016/j.biortech.2013.07.06023981269
33
Wong, J.W.C., S.O. Fung, and A. Selvam. 2009. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresour. Technol. 100:3324-3331. 10.1016/j.biortech.2009.01.06319268581
34
Wu, S., H. He, X. Inthapanya, C. Yang, L. Lu, G. Zeng, and Z. Han. 2017. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environ. Sci. Pollut. Res. 24:16560-16577. 10.1007/s11356-017-9168-128551738
35
Yang, F., G. Li, H. Shi, and Y. Wang. 2015. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Manage. 36:70-76. 10.1016/j.wasman.2014.11.01225481697
36
Yang, F., Y. Li, Y. Han, W. Qian, G. Li, and W. Luo. 2019. Performance of mature compost to control gaseous emissions in kitchen waste composting. Sci. Total Environ. 657:262-269. 10.1016/j.scitotenv.2018.12.03030543975
37
Yuan, J., Q. Yang, Z. Zhang, G. Li, W. Luo, and D. Zhang. 2015. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. J. Environ. Sci. 37:83-90. 10.1016/j.jes.2015.03.02826574091
38
Zhang, D., W. Luo, Y. Li, G. Wang, and G. Li. 2018. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour. Technol. 250:853-859. 10.1016/j.biortech.2017.08.13630001593
39
Zhang, H., G. Li, J. Gu, G. Wang, Y. Li, and D. Zhang. 2016. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. Waste Manage. 58:369-375. 10.1016/j.wasman.2016.08.02227595496
40
Zhang, L. and X. Sun. 2015. Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manage. 39:119-129. 10.1016/j.wasman.2015.02.03725792439
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 55
  • No :4
  • Pages :443-454
  • Received Date : 2022-11-01
  • Revised Date : 2022-11-24
  • Accepted Date : 2022-11-25