All Issue

2021 Vol.54, Issue 4 Preview Page

Original research article

30 November 2021. pp. 451-466
Abstract
References
1
Aguilar-Chavez, A., M. Díaz-Rojas, M.R. Cardenas-Aquino, L. Dendooven, and M. Luna-Guido. 2012. Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 52:90-95. 10.1016/j.soilbio.2012.04.022
2
Ameloot, N., S. De Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y.N. Funkuin, W. Prins, L. Bouckaert, and S. Sleutel. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 57:401-410. 10.1016/j.soilbio.2012.10.025
3
Amoakwah, E., E. Arthur, K.A. Frimpong, S.J. Parikh, and R. Islam. 2020. Soil organic carbon storage and quality are impacted by corncob biochar application on a tropical sandy loam. J. Soils Sediments 20(4):1960-1969. 10.1007/s11368-019-02547-5
4
Ascough, P.L., C.J. Sturrock, and M.I. Bird. 2010. Investigation of growth responses in saprophytic fungi to charred biomass. Isot. Environ. Health Stud. 46:64-77. 10.1080/1025601090338843620229385
5
Bai, S.H., F. Reverchon, C.Y. Xu, Z. Xu, T.J. Blumfield, H. Zhao, L. Van Zwieten, and H.M. Wallace. 2015. Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol. Biochem. 90:232-240. 10.1016/j.soilbio.2015.08.007
6
Beesley, L., E. Moreno-Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson, and T. Sizmur. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159(12):3269-3282. 10.1016/j.envpol.2011.07.02321855187
7
Carvalho, M.T.M., B.E. Madari, L. Bastiaans, P.A.J. van Oort, W.G.O. Leal, A.B. Heinemann, M.A.S. da Silva, A.H.N. Maia, D. Parsons, and H. Meinke. 2016. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma 276:7-18. 10.1016/j.geoderma.2016.04.013
8
Case, S.D.C., N.P. McNamara, D.S. Reay, A.W. Stott, H.K. Grant, and J. Whitaker. 2015. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem. 81(2):178-185. 10.1016/j.soilbio.2014.11.012
9
Cayuela, M.L., L. van Zwieten, B.P. Singh, S. Jeffery, A. Roig, and M.A. Sánchez-Monedero. 2014. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric., Ecosyst. Environ. 191:5-16. 10.1016/j.agee.2013.10.009
10
Chen, K., J. Peng, J. Li, Q. Yang, X. Zhan, N. Liu, and X. Han. 2020. Stabilization of soil aggregate and organic matter under the application of three organic resources and biochar-based compound fertilizer. J. Soils Sediments 20(10):3633-3643. 10.1007/s11368-020-02693-1
11
Clough, T., L. Condron, C. Kammann, and C. Müller. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3(2):275-293. 10.3390/agronomy3020275
12
Dai, Z., X. Xiong, H. Zhu, H. Xu, P. Leng, J. Li, C. Tang, and J. Xu. 2021. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 3(3):239-254. 10.1007/s42773-021-00099-x
13
Deng, B., L. Zheng, Y. Ma, L. Zhang, X. Liu, X. Zhang, W. Zhang, W. Huang, X. Hu, X. Guo, and E. Siemann. 2020. Effects of mixing biochar on soil N2O, CO2, and CH4 emissions after prescribed fire in alpine meadows of Wugong Mountain, China. J. Soils Sediments 20:3062-3072. 10.1007/s11368-019-02552-8
14
Dong, D., Q. Feng, K. McGrouther, M. Yang, H. Wang, and W. Wu. 2015. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 15(1):153-162. 10.1007/s11368-014-0984-3
15
Duan, M., G. Liu, B. Zhou, X. Chen, Q. Wang, H. Zhu, and Z. Li. 2021. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil. J. Soils Sediments 21(6):2192-2202. 10.1007/s11368-021-02913-2
16
El-Naggar, A., Y.M. Awad, X.Y. Tang, C. Liu, N.K. Niazi, S.H. Jien, and S.S. Lee. 2018. Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degrad. Dev. 29:2162-2171. 10.1002/ldr.2896
17
Gaskin, J.W., C. Steiner, K. Harris, K.C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 51:2061-2069. 10.13031/2013.25409
18
Hailegnaw, N.S., F. Mercl, K. Pračke, J. Száková, and P. Tlustoš. 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 19(5):2405-2416. 10.1007/s11368-019-02264-z
19
Han, L., B. Zhang, L. Chen, Y. Feng, Y. Yang, and K. Sun. 2021. Impact of biochar amendment on soil aggregation varied with incubation duration and biochar pyrolysis temperature. Biochar 3(3):339-347. 10.1007/s42773-021-00097-z
20
Huang, M., L. Yang, H. Qin, L. Jiang, and Y. Zou. 2013. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 154:172-177. 10.1016/j.fcr.2013.08.010
21
IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change. In S. Solomon et al. (ed.) The scientific basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA.
22
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 10.1017/CBO9781107415416
23
Jeffery, S., F.G.A. Verheijen, C. Kammann, and D. Abalos. 2016. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 101:251-258. 10.1016/j.soilbio.2016.07.021
24
Karhu, K., T. Mattilab, I. Bergstrom, and K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agric., Ecosyst. Environ. 140:309-313. 10.1016/j.agee.2010.12.005
25
Lee, M., U. Han, N. Kim, J. Han, K. Shin, and C. Kang. 2003. Analysis on the spatial characteristics caused by the cropland increase using multitemporal landsat images in lower reach of Duman River, Northeast Korea. J. Korea Geogr. Soc. 38(4):630-639.
26
Lee, S.I., G.Y. Kim, H.S. Gwon, J.S. Lee, E.J. Choi, and J.D. Shin. 2020. Effects of different nitrogen fertilizer and biochar applications on CO2 and N2O emissions from upland soil in the closed chamber. Korean J. Soil Sci. Fert. 53(4):431-445.
27
Lehmann, J. 2007. A handful of carbon. Nature 447:143-144. 10.1038/447143a17495905
28
Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: Science and technology. Earthscan, London, UK.
29
Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems: A review. Mitigation Adapt. Strategies Global Change 11:403-427. 10.1007/s11027-005-9006-5
30
Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota - A review. Soil Biol. Biochem. 43(9):1812-1836. 10.1016/j.soilbio.2011.04.022
31
Li, J., S. Wang, J. Luo, L. Zhang, Z. Wu, and S. Lindsey. 2021. Effects of biochar and 3,4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils. J. Soils Sediments 21(2):1089-1098. 10.1007/s11368-020-02811-z
32
Liu, J., J. Shen, Y. Li, Y. Su, T. Ge, D.L. Jones, and J. Wu. 2014. Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. Eur. J. Soil Biol. 65:30-39. 10.1016/j.ejsobi.2014.09.001
33
Liu, X., J. Zhou, Z. Chi, J. Zheng, L. Li, X. Zhang, J. Zheng, K. Cheng, R. Bian, and G. Pan. 2019. Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. Catena 179:20-28. 10.1016/j.catena.2019.03.033
34
Liu, Y., H. Lu, S. Yang, and Y. Wang. 2016. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Res. 191:161-167. 10.1016/j.fcr.2016.03.003
35
Liu, Y., M. Yang, Y. Wu, H. Wang, Y. Chen, and W. Wu. 2011. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 11(6):930-939. 10.1007/s11368-011-0376-x
36
Martos, S., S. Mattana, A. Ribas, E. Albanell, and X. Domene. 2020. Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: A case study in a Mediterranean calcareous soil. J. Soils Sediments 20(1):220-233. 10.1007/s11368-019-02400-9
37
Nguyen, B.T., B.T. Phan, T.X. Nguyen, V.N. Nguyen, T. Van Tran, and Q.V. Bach. 2020. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. J. Soils Sediments 20(1):297-307. 10.1007/s11368-019-02366-8
38
Nguyen, T.T.N., C.Y. Xu, I. Tahmasbian, R. Che, Z. Xu, X. Zhou, H.M. Wallace, and S.H. Bai. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 288:79-96. 10.1016/j.geoderma.2016.11.004
39
NIAS. 2000. Methods of soil and plant analysis. National Institute of Agricultural Sciences, RDA, Suwon, Korea.
40
Nichols, G.J., J.A. Cripps, M.E. Collinson, and A.D. Scott. 2000. Experiments in waterlogging and sedimentology of charcoal: Results and implications. Palaeogeogr., Palaeoclimatol., Palaeoecol. 164:43-56. 10.1016/S0031-0182(00)00174-7
41
Oh, S., J. Son, Y. Ok, and J. Joo. 2010. A modified methodology of salt removal through flooding and drainage in a plastic film house soil. Korean J. Soil Sci. Fert. 43(5):443-449.
42
Ok, J.H., J.L. Cho, B.M. Lee, N.H. An, and J.H. Shin. 2015. Monitoring for change of soil characteristics by repeated organic supply of comport and green manures in newly reclaimed organic upland field. Korean J. Org. Agric. 23(4):813-827. 10.11625/KJOA.2015.23.4.813
43
Park, D.G., S.G. Hong, E. Jang, and J.D. Shin. 2019. Assessment of an optimum biochar application rate for tomato (Solanum lycopersicum L.) cultivation. J. Korea Org. Resour. Recycl. Assoc. 27(1):39-48.
44
Park, J.H., S.W. Kang, J.J. Yun, S.G. Lee, S.H. Kim, J.S. Beak, and J.S. Cho. 2021. Effects of co-application of biochars and composts on lettuce growth. Korean J. Soil Sci. Fert. 54(2):151-160.
45
Park, W.K., N.B. Park, J.D. Shin, S.G. Hong, and S.K. Kwon. 2011. Estimation of biomass resource conversion factor and potential production in agricultural sector. Korean J. Environ. Agric. 30(3):252-260. 10.5338/KJEA.2011.30.3.252
46
Quilliam, R.S., H.C. Glanville, S.C. Wade, and D.L. Jones. 2013. Life in the “charosphere” - Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol. Biochem. 65:287-293. 10.1016/j.soilbio.2013.06.004
47
Shaukat, M., K. Samoy-Pascual, E.D.V.L. Maas, and A. Ahmad. 2019. Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice. J. Environ. Manage. 248:109242. 10.1016/j.jenvman.2019.07.01331315074
48
Sistani, K.R., M. Jn-Baptiste, N. Lovanh, and K.L. Cook. 2011. Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers. J. Environ. Qual. 40:1797-1805. 10.2134/jeq2011.019722031562
49
Spokas, K.A., W.C, Koskinen, J.M. Baker, and D.C. Reicosky. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574-581. 10.1016/j.chemosphere.2009.06.05319647284
50
Troy, S.M., P.G. Lawlor, C.J. O’Flynn, and E.H. Healy. 2013. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol. Biochem. 60:173-181. 10.1016/j.soilbio.2013.01.019
51
Uchida, Y., M. Moriizumi, and M. Shimotsuma. 2019. Effects of rice husk biochar and soil moisture on the accumulation of organic and inorganic nitrogen and nitrous oxide emissions during the decomposition of hairy vetch (Vicia villosa) mulch. Soil Sci. Plant Nutr. 65:409-418. 10.1080/00380768.2019.1624139
52
Van Zwieten, L., B.P. Singh, S.W.L. Kimber, D.V. Murphy, L.M. Macdonald, J. Rust, and S. Morris. 2014. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric., Ecosyst. Environ. 191:53-62. 10.1016/j.agee.2014.02.030
53
van Zwieten, L., S. Kimber, A. Downie, S. Morris, S. Petty, J. Rust, and K.Y. Chan. 2010. A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Res. 48:569-576. 10.1071/SR10003
54
Woo, S.H. 2013. Biochar for soil carbon sequestration. Clean Technol. 19(3):201-211. 10.7464/ksct.2013.19.3.201
55
Woo, S.H. 2015. A new wave of biochar to respond to climate change. p.172. Good Land, Seoul, Korea.
56
Woolf, D. and J. Lehmann. 2012. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111(1-3):83-95. 10.1007/s10533-012-9764-6
57
Yang, C.H, C.H. Yoo, J.H. Jung, B.S. Kim, W.K. Park, J.H. Ryu, T.K. Kim, J.D. Kim, S.J. Kim, and S.H. Baek. 2008. The change of physico-chemical properties of paddy soil in reclaimed tidal land. Korean J. Soil Sci. Fert. 41(2):94-102.
58
Yoon, Y.M. 2014. The actual conditions of biomass use in Korea and the activation plan. KREI Report, Naju, Korea.
59
Zeng, W., C. Xu, J. Wu, J. Huang, and T. Ma. 2013. Effect of salinity on soil respiration and nitrogen dynamics. Ecol. Chem. Eng. 20:519-530. 10.2478/eces-2013-0039
60
Zhang, A.F., L.Q. Cui, G.X. Pan, L.Q. Li, Q. Hussain, X.H. Zhang, J.W. Zheng, and D. Crowley. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric., Ecosyst. Environ. 139:469-475. 10.1016/j.agee.2010.09.003
61
Zhang, X., S. Kondragunta, C. Schmidt, and F. Kogan. 2008. Near real time monitoring of biomass burning particulate emissions (PM 2.5) across contiguous United States using multiple satellite instruments. Atmos. Environ. 42:6959-6972. 10.1016/j.atmosenv.2008.04.060
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :4
  • Pages :451-466
  • Received Date : 2021-09-29
  • Revised Date : 2021-11-08
  • Accepted Date : 2021-11-10