All Issue

2021 Vol.54, Issue 4 Preview Page

Original research article

30 November 2021. pp. 467-477
Abstract
References
1
Acosta-Martinez, V. and M. Tabatabai. 2000. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31:85-91. 10.1007/s003740050628
2
Adetunji, A.T., F.B. Lewu, R. Mulidzi, and B. Ncube. 2017. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 17(3):794-807. 10.4067/S0718-95162017000300018
3
Alef, K. and P. Nannipieri. 1998. Methods in applied soil microbiology and biochemistry. p. 362-363. Academic Press, London, UK.
4
Błońska, E. 2010. Enzyme activity in forest peat soils. Folia For. Pol., Ser. A 52:20-25.
5
Casida Jr., L., D. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98:371-376. 10.1097/00010694-196412000-00004
6
Chae, G.S. 2012. Recent trends in agricultural land change and countermeasures. p. 1-17. Korea Rural Economic Research Institute, Naju, Korea.
7
Dick, W., L. Cheng, and P. Wang. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32:1915-1919. 10.1016/S0038-0717(00)00166-8
8
Fan, M.S., R.F. Jiang, F.S. Zhang, S.H. Lü, and X.J. Liu. 2008. Nutrient management strategy of paddy rice-upland crop rotation system. Chin. J. Appl. Ecol. 9(2):424-432.
9
Hayano, K. and A. Katami. 1977. Extraction of β-glucosidase activity from a pea field soil. Soil Biol. Biochem. 9:349-351. 10.1016/0038-0717(77)90008-6
10
Liu, Y., X. Chen, M. Liu, J. Qin, H. Li, and F. Hu. 2013. Changes in soil microbial properties and nematode assemblage over time during rice cultivation. Biodiversity Sci. 21:334-342. 10.3724/SP.J.1003.2013.09030
11
Makoi, J.H.J.R. and P.A. Ndakidemi. 2008. Selected soil enzymes: Examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 7(3):181-191.
12
Maseko, S. and F. Dakora. 2013. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. S. Afr. J. Bot. 89:289-295. 10.1016/j.sajb.2013.06.023
13
Moeskops, B., D. Buchan, S. Sleutel, L. Herawaty, E. Husen, R. Saraswati, D. Setyorini, and S. De Neve. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol. 45(2):112-120. 10.1016/j.apsoil.2010.03.005
14
Msofe, N.K., L. Sheng, Z. Li, L. J, and L. Wang. 2019. Influence of agricultural land use change on the selected physico-chemical soil properties in Kilombero valley floodplain, Southeastern Tanzania. Int. J. Environ. Sci. Nat. Resour. 21(5):556074. 10.19080/IJESNR.2019.21.556074
15
NIAST. 2000. Methods of analysis of soil and plant. RDA, Suwon, Korea.
16
Nishimura, S., S. Yonemura, T. Sawamoto, Y. Shirato, H. Akiyama, S. Sudo, and K. Yagi. 2008. Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agric. Ecosyst. Environ. 125(1-4):9-20. 10.1016/j.agee.2007.11.003
17
Nüsslein, K. and J.M. Tiedje. 1999. Soil bacteria community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65:3622-3626 10.1128/AEM.65.8.3622-3626.199910427058PMC91543
18
Piotrowska-Dlugosz, A. and E. Wilczewski. 2014. Soil phosphatase activity and phosphorus content as influenced by catch crops cultivated as green manure. Pol. J. Environ. Stud. 23:157-165.
19
Saunders, W.M.H. and E.G. Williams. 1955. Observations on the determination of total organic phosphorus in soils. J. Soil Sci. 6:247-267. 10.1111/j.1365-2389.1955.tb00849.x
20
Statistics Korea. 2021. Agricultural area survey in 2020. Statistics Korea, Daejeon, Korea. 10.1787/a7f257f8-en
21
Tabatabai, M.A. and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1(4):301-307. 10.1016/0038-0717(69)90012-1
22
Viollete, G., P. Karina, and H. Esperanza. 2009. Effects of the different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico. Pedologia 53(1):75-86. 10.1016/j.pedobi.2009.03.004
23
Winkler, K., R. Fuchs, M. Rounsevell, and M. Herold. 2021. Global land use changes are four times greater than previously estimated. Nat. Commun. 12:2501. 10.1038/s41467-021-22702-233976120PMC8113269
24
Xiao-Chang, W. and L. Qin. 2006. Beta-glucosidase activity in paddy soils of the Taihu lake region, China. Pedosphere 16:118-124. 10.1016/S1002-0160(06)60033-7
25
Yoon, E.S, K.Y. Jung, K.D. Park, J.Y. Ko, J.S. Lee, and S.T. Park. 2009. Changes in the soil physical properties of vineyard converted from paddy field. Korean J. Soil Sci. Fert. 42(3):145-151.
26
Yuan, B.C. and D.X. Yue. 2012. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the loess plateau of China. Pedosphere 22(1):1-12. 10.1016/S1002-0160(11)60186-0
27
Zhang, M., Z. He, and M.J. Wilson. 2004. Effects of land use on the chemical and physical properties of red soils. In M.J. Wilson et al. (ed.) The red soils of China. Springer, Dordrecht, Netherlands. 10.1007/978-1-4020-2138-1_19
28
Zhang, N., X. He, Y. Gao, Y. Li, H. Wang, D. Ma, R. Zhang, and S. Yang. 2010. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 20:229-235. 10.1016/S1002-0160(10)60010-0
29
Zhou, W., T.F. Lv, Y. Chen, A.P. Westby, and W.J. Ren. 2014. Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci. World J. 2014:856352. 10.1155/2014/85635224995366PMC4060577
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 54
  • No :4
  • Pages :467-477
  • Received Date : 2021-09-30
  • Revised Date : 2021-11-16
  • Accepted Date : 2021-11-22