All Issue

2023 Vol.56, Issue 1 Preview Page

Original research article

28 February 2023. pp. 12-26
Abstract
References
1
Ashbolt, N.J., A. Amézquita, T. Backhaus, P. Borriello, K.K. Brandt, P. Collignon, A. Coors, R. Finley, W.H. Gaze, and T. Heberer. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 121(9):993-1001. 10.1289/ehp.120631623838256PMC3764079
2
Baquero, F., J.L. Martínez, and R. Cantón. 2008. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19(3):260-265. 10.1016/j.copbio.2008.05.00618534838
3
Boy-Roura, M., J. Mas-Pla, M. Petrovic, M. Gros, D. Soler, D. Brusi, and A. Menció. 2018. Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ. 612:1387-1406. 10.1016/j.scitotenv.2017.09.01228898946
4
Cha, J., S. Yang, and K. Carlson. 2006. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J. Chromatogr. A 1115(1-2):46-57. 10.1016/j.chroma.2006.02.08616595135
5
Choe, H., H. Chohra, V. Kantharaj, M.S. Cheong, and Y.B. Lee. 2021. Effects of tetracyclines on primary root length and chlorophyll contents of vegetable crops. Korean J. Soil Sci. Fert. 54(1):33-40. 10.7745/KJSSF.2021.54.1.033
6
Christian, T., R.J. Schneider, H.A. Färber, D. Skutlarek, M.T. Meyer, and H.E. Goldbach. 2003. Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim. Hydrobiol. 31(1):36-44. 10.1002/aheh.200390014
7
Conde-Cid, M., C. Álvarez-Esmorís, R. Paradelo-Núñez, J.C. Nóvoa-Muñoz, M. Arias-Estévez, E. Álvarez-Rodríguez, M.J. Fernández-Sanjurjo, and A. Núñez-Delgado. 2018. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Cleaner Prod. 197:491-500. 10.1016/j.jclepro.2018.06.217
8
Conde-Cid, M., D. Fernández-Calviño, A. Núñez-Delgado, M. Fernández-Sanjurjo, M. Arias-Estévez, and E. Álvarez-Rodríguez. 2020. Estimation of adsorption/desorption Freundlich’s affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions. Ecotoxicol. Environ. Saf. 196:110584. 10.1016/j.ecoenv.2020.11058432278142
9
Dinh, Q., E. Moreau-Guigon, P. Labadie, F. Alliot, M.J. Teil, M. Blanchard, J. Eurin, and M. Chevreuil. 2017. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 575:758-766. 10.1016/j.scitotenv.2016.09.11827693143
10
Englert, B. 2007. Method 1694: Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. EPA-821-R-08-002. U.S. Environmental Protection Agency, Washington, DC, USA.
11
Fernández-Calviño, D., A. Bermúdez-Couso, M. Arias-Estévez, J.C. Nóvoa-Muñoz, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, and A. Núñez-Delgado. 2015. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils. Environ. Sci. Pollut. Res. 22(1):425-433. 10.1007/s11356-014-3367-925081007
12
Franzluebbers, A., F. Hons, and D. Zuberer. 1995. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Tillage Res. 34(1):41-60. 10.1016/0167-1987(94)00450-S
13
Gong, W., X. Liu, H. He, L. Wang, and G. Dai. 2012. Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties. Chemosphere 89(7):825-831. 10.1016/j.chemosphere.2012.04.06422658476
14
Grenni, P., V. Ancona, and A.B. Caracciolo. 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 136:25-39. 10.1016/j.microc.2017.02.006
15
Hall, M.C., N.A. Mware, J.E. Gilley, S.L. Bartelt-Hunt, D.D. Snow, A.M. Schmidt, K.M. Eskridge, and X. Li. 2020. Influence of setback distance on antibiotics and antibiotic resistance genes in runoff and soil following the land application of swine manure slurry. Environ. Sci. Technol. 54(8):4800-4809. 10.1021/acs.est.9b0483432207931
16
Hao, H., G. Cheng, Z. Iqbal, X. Ai, H.I. Hussain, L. Huang, M. Dai, Y. Wang, Z. Liu, and Z. Yuan. 2014. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 5:288. 10.3389/fmicb.2014.00288
17
Ho, Y.B., M.P. Zakaria, P.A. Latif, and N. Saari. 2014. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci. Total Environ. 488:261-267. 10.1016/j.scitotenv.2014.04.10924836135
18
Hoese, A., S. Clay, D. Clay, J. Oswald, T. Trooien, R. Thaler, and C. Carlson. 2009. Chlortetracycline and tylosin runoff from soils treated with antimicrobial containing manure. J. Environ. Sci. Health, B 44(4):371-378. 10.1080/0360123090280107519365753
19
Hou, J., W. Wan, D. Mao, C. Wang, Q. Mu, S. Qin, and Y. Luo. 2015. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environ. Sci. Pollut. Res. 22(6):4545-4554. 10.1007/s11356-014-3632-y25318415
20
Hu, D. and J.R. Coats. 2007. Aerobic degradation and photolysis of tylosin in water and soil. Environ. Toxicol. Chem. 26(5):884-889. 10.1897/06-197R.117521133
21
Jiang, H., X. Han, W. Zou, X. Hao, and B. Zhang. 2018. Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agric. Ecosyst. Environ. 268:133-143. 10.1016/j.agee.2018.09.007
22
Jjemba, P.K. 2002. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: A review. Agric., Ecosyst. Environ. 93(1-3):267-278. 10.1016/S0167-8809(01)00350-4
23
Kemper, N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8(1):1-13. 10.1016/j.ecolind.2007.06.002
24
Kim, J.W., Y.K. Hong, and S.C. Kim. 2020. Occurrence of veterinary antibiotics in the agro-environment. Korean J. Soil Sci. Fert. 53(2):222-230. 10.7745/KJSSF.2020.53.2.222
25
Kim, S.C., J.G. Davis, C.C. Truman, J.C. Ascough II, and K. Carlson. 2010. Simulated rainfall study for transport of veterinary antibiotics - mass balance analysis. J. Hazard. Mater. 175(1-3):836-843. 10.1016/j.jhazmat.2009.10.08619932562
26
Larney, F.J., D.M. Sullivan, K.E. Buckley, and B. Eghball. 2006. The role of composting in recycling manure nutrients. Can. J. Soil Sci. 86(4):597-611. 10.4141/S05-116
27
Le, H.T., R.O. Maguire, and K. Xia. 2018. Method of dairy manure application and time before rainfall affect antibiotics in surface runoff. J. Environ. Qual. 47(6):1310-1317. 10.2134/jeq2018.02.008630512075
28
Lee, H.Y., J.E. Lim, S.C. Kim, K.R. Kim, O.K. Kwon, J.E. Yang, and Y.S. Ok. 2009. Transport of selected veterinary antibiotics (tetracyclines and sulfonamides) in a sandy loam soil: Laboratory-scale soil column experiments. J. Korean Soc. Environ. Eng. 31(12):1105-1112.
29
Lee, S.S., S.C. Kim, K.R. Kim, O.K. Kwon, J.E. Yang, and Y.S. Ok. 2010. Seasonal monitoring of residual veterinary antibiotics in agricultural soil, surface water and sediment adjacent to a poultry manure composting facility. Korean J. Environ. Agric. 29(3):273-281. 10.5338/KJEA.2010.29.3.273
30
Lin, G., Y. He, J. Lu, H. Chen, and J. Feng. 2021. Seasonal variations in soil physicochemical properties and microbial community structure influenced by Spartina alterniflora invasion and Kandelia obovata restoration. Sci. Total Environ. 797:149213. 10.1016/j.scitotenv.2021.14921334311375
31
Lin, H., S.J. Chapman, T.E. Freitag, C. Kyle, J. Ma, Y. Yang, and Z. Zhang. 2019. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotoxicol. Environ. Saf. 170:39-46. 10.1016/j.ecoenv.2018.11.05930513413
32
Liu, Y., K. Zhu, J. Wang, X. Huang, G. Wang, C. Li, J. Cao, and S. Ding. 2016. Simultaneous detection and comparative pharmacokinetics of amoxicillin, clavulanic acid and prednisolone in cows’ milk by UPLC-MS/MS. J. Chromatogr. B 1008:74-80. 10.1016/j.jchromb.2015.11.03126638031
33
Loftin, K.A., C.D. Adams, M.T. Meyer, and R. Surampalli. 2008. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 37(2):378-386. 10.2134/jeq2007.023018268300
34
Mahmoudian, M.H., M. Fazlzadeh, M.H. Niari, A. Azari, and E.C. Lima. 2020. A novel silica supported chitosan/glutaraldehyde as an efficient sorbent in solid phase extraction coupling with HPLC for the determination of Penicillin G from water and wastewater samples. Arabian J. Chem. 13(9):7147-7159. 10.1016/j.arabjc.2020.07.020
35
Maszkowska, J., M. Kołodziejska, A. Białk-Bielińska, W. Mrozik, J. Kumirska, P. Stepnowski, R. Palavinskas, O. Krüger, and U. Kalbe. 2013. Column and batch tests of sulfonamide leaching from different types of soil. J. Hazard. Mater. 260:468-474. 10.1016/j.jhazmat.2013.05.05323811368
36
Michalska, K., G. Pajchel, and S. Tyski. 2004. Capillary electrophoresis method for simultaneous determination of penicillin G, procaine and dihydrostreptomycin in veterinary drugs. J. Chromatogr. B 800(1-2):203-209. 10.1016/j.jchromb.2003.10.01714698256
37
Montforts, M. 2005. Validation of the EU environmental risk assessment for veterinary medicines. Doctoral Dissertation, Leiden University, Leiden, Netherlands.
38
O’Connor, S. and D.S. Aga. 2007. Analysis of tetracycline antibiotics in soil: Advances in extraction, clean-up, and quantification. TrAC, Trends Anal. Chem. 26(6):456-465. 10.1016/j.trac.2007.02.007
39
Paik, M.K., S.H. Ryu, S.C. Kim, Y.K. Hong, J.W. Kim, J.G. Kim, and O.K. Kwon. 2021. Residue and risk assessment of veterinary antibiotics in manure-based composts and agricultural soils. J. Appl. Biol. Chem. 64(2):177-184. 10.3839/jabc.2021.026
40
Qiao, M., W. Chen, J. Su, B. Zhang, and C. Zhang. 2012. Fate of tetracyclines in swine manure of three selected swine farms in China. J. Environ. Sci. 24(6):1047-1052. 10.1016/S1001-0742(11)60890-523505872
41
Rabølle, M. and N.H. Spliid. 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40(7):715-722. 10.1016/S0045-6535(99)00442-710705549
42
Sarmah, A.K., M.T. Meyer, and A.B. Boxall. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725-759. 10.1016/j.chemosphere.2006.03.02616677683
43
Seo, Y.H., J.K. Choi, S.K. Kim, H.K. Min, and Y.S. Jung. 2007. Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment. Korean J. Soil Sci. Fert. 40(1):43-50.
44
Snow, D.D., D.A. Cassada, M.L. Larsen, N.A. Mware, X. Li, M. D’Alessio, Y. Zhang, and J.B. Sallach. 2017. Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ. Res. 89(10):897-920. 10.2175/106143017X1502377627016028954647PMC5896314
45
Spielmeyer, A., H. Höper, and G. Hamscher. 2017. Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater. Chemosphere 177:232-238. 10.1016/j.chemosphere.2017.03.02028292723
46
Sukul, P., M. Lamshöft, S. Zühlke, and M. Spiteller. 2008. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 73(8):1344-1350. 10.1016/j.chemosphere.2008.06.06618706672
47
Teeter, J.S. and R.D. Meyerhoff. 2003. Aerobic degradation of tylosin in cattle, chicken, and swine excreta. Environ. Res. 93(1):45-51. 10.1016/S0013-9351(02)00086-512865047
48
Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils - a review. J. Plant Nutr. Soil Sci. 166(2):145-167. 10.1002/jpln.200390023
49
Thornton, P.K. 2010. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc., B 365(1554):2853-2867. 10.1098/rstb.2010.013420713389PMC2935116
50
Timm, A., E. Borowska, M. Majewsky, S. Merel, C. Zwiener, S. Bräse, and H. Horn. 2019. Photolysis of four β-lactam antibiotics under simulated environmental conditions: Degradation, transformation products and antibacterial activity. Sci. Total Environ. 651:1605-1612. 10.1016/j.scitotenv.2018.09.24830360286
51
Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29-38. 10.1097/00010694-193401000-00003
52
Wang, B., G. Li, C. Cai, J. Zhang, and H. Liu. 2018a. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: Organic matter’s maturation and antibiotic resistance genes. Sci. Total Environ. 636:1463-1469. 10.1016/j.scitotenv.2018.04.28829913606
53
Wang, H., Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan, and J.W. Chew. 2018b. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144:215-225. 10.1016/j.watres.2018.07.02530031366
54
Watanabe, N., B.A. Bergamaschi, K.A. Loftin, M.T. Meyer, and T. Harter. 2010. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ. Sci. Technol. 44(17):6591-6600. 10.1021/es100834s20698525PMC2931405
55
Zessel, K., S. Mohring, G. Hamscher, M. Kietzmann, and J. Stahl. 2014. Biocompatibility and antibacterial activity of photolytic products of sulfonamides. Chemosphere 100:167-174. 10.1016/j.chemosphere.2013.11.03824321335
56
Zhang, Y., W.R. Kelly, S.V. Panno, and W.T. Liu. 2014. Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables. Sci. Total Environ. 490:1082-1090. 10.1016/j.scitotenv.2014.05.08624922611
57
Zhao, F., L. Chen, L. Yang, S. Li, L. Sun, and X. Yu. 2018. Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, Eastern China. Chemosphere 211:261-270. 10.1016/j.chemosphere.2018.07.16230077105
58
Zhou, L.J., G.G. Ying, S. Liu, R.Q. Zhang, H.J. Lai, Z.F. Chen, and C.G. Pan. 2013. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 444:183-195. 10.1016/j.scitotenv.2012.11.08723268145
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :1
  • Pages :12-26
  • Received Date : 2022-11-04
  • Revised Date : 2022-12-01
  • Accepted Date : 2022-12-02