All Issue

2020 Vol.53, Issue 4 Preview Page

Original research article

30 November 2020. pp. 458-470
Abstract
References
1
Barman, D., D.K. Kundu, S. Pal, S. Pal, A.K. Chakraborty, A.K. Jha, S.P. Mazumdar, R. Saha, and P. Bhattacharyya. 2017. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain. Int. Agrophys. 31:9-22. 10.1515/intag-2016-0034
2
Bilgili, M., B. Sahinand, and L. Sangun. 2013. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Environ. Monit. Assess. 185:347-358. 10.1007/s10661-012-2557-522322408
3
Dolschak, K., K. Gartner, and T.W. Berger. 2015. A new approach to predict soil temperature under vegetated surfaces. Model. Earth Syst. Environm:1-32. 10.1007/s40808-015-0041-226870835PMC4746742
4
Ha, S.K., Y.S. Jung, L.Y. Kim, and B.C. Kim. 1996. Characteristics of soil temperature changes in selected regions of Korea. RDA. J. Agri. Sci. 38:427-434.
5
Halama, J.J., B.L. Barnhart, R.E. Kennedy, R.B. McKane, J.J. Graham, P.P. Pettus, A.F. Brookes, K.S. Djang, and R.S. Waschmann. 2018. Improved soil temperature modeling using spatially explicit solar energy drivers. Water 10:1398-1412. 10.3390/w1010139830505572PMC6260948
6
Hillel, D. 1998. Environmental soil physics. pp.310-311, 324-325. Academic Press. USA.
7
Hur, S.O., W.T. Kim, K.H. Jung, and S.K. Ha. 2004. Estimation of soil surface temperature by heat flux in soil. J. Kor. Soc. Soil Sci. Fert. 37:131-135.
8
Jung, Y.S., B.W. Lee, B.C. Kim, Y.S. Lee, and K.T. Um. 1990. A statistical model to predict soil temperature by combining the yearly oscillation Fourier expansion and metrological factors. J. Kor. Soc. Soil Sci. Fert. 23:87-93.
9
Kim, K.H., K.Y. Kim, J.K. Kim, D.M. Sa, J.S. Seo, B.K. Sonn, J.E. Yang, K.C. Eom, S.E. Lee, K.Y. Jung, D.Y. Jung, Y.T. Jung, J.B. Jung, and H.N. Hyun. 2009. Soil temperature, p. 98. In: Soil Science. 2nd ed., Hyangmoon-sa, Seoul, Korea
10
Kisi, O., M. Tombul, and M.Z. Kermani. 2015. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol. 121:377-387. 10.1007/s00704-014-1232-x
11
Li, C., Y. Zhang, and X. Ren. 2020. Modeling hourly soil temperature using deep BiLSTM neural network. Algorithms 13:173-187. 10.3390/a13070173
12
Mehdizadeh, S., F. Fathian, M.J.S. Safari, and A. Khosravi. 2020. Developing novel hybrid models for estimation of daily soil temperature at various depths. 10.1016/j.still.2019.104513
13
Nanda, A., S. Sen, A.N. Sharma, and K.P. Sudheer. 2020. Soil temperature dynamics at hillslope scale-field observation and machine learning-based approach. Water 12:713-733. 10.3390/w12030713
14
Paul, K.I., P.J. Polglase, P.J. Smerthurst, A.M. O'Connell, C.J. Carlyle, and P.K. Khanna. 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agricultural & Forest Meteorology 121:167-182. 10.1016/j.agrformet.2003.08.030
15
RDA (Rural Development Administration). 2000. Soil & plant analysis method., Sammi, Suwon, Republic of Korea.
16
Shamshirband, S., F. Esmaeilbeiki, D. Zarehaghi, M. Neyshabouri, S. Samadianfardd, M.A. Ghorbani, A. Mosavi, N. Nabipour, and K.W. Chau. 2020. Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths. Engineering Applications of Computational Fluid Mechanics 14:939-953. 10.1080/19942060.2020.1788644
17
Sharma, P., M.K. Shukla, and T.W. Sammis. 2010. Predicting soil temperature using air temperature and soil, crop and meteorological parameters for three specialty crops in southern New Mexico. Applied Engineering in Agriculture 26:47-58. 10.13031/2013.29474
18
Tsai, Y.Z., K.S. Hsu, H.Y. Wu, S.I. Lin, H.L. Yu, K.T. Huang, M.C. Hu, and S.Y. Hsu. 2020. Application of random forest and ICON models combined with weather forecasts to predict soil temperature and water content in a greenhouse. Water 12:1176-1198. 10.3390/w12041176
19
Wang, J., W.F. Lee, and P.P. Ling. 2020. Estimation of Thermal Diffusivity for Greenhouse Soil Temperature Simulation. Applied Sciences 10:653-667. 10.3390/app10020653
20
Zeynoddin, M., H. Bonakdari, I. Ebtehaj, F. Esmaeilbeiki, B. Gharabaghi, and D.Z. Haghic. 2019. A reliable linear stochastic daily soil temperature forecast model. Soil and Tillage Research 189:73-87. 10.1016/j.still.2018.12.023
21
Zhang, G., X. Ding, T. Li, W.Pu, W. Lou, and J. Hou. 2020. Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis. Energy 198:117281. 10.1016/j.energy.2020.117281
22
Zheng, D., E.R. Hunt Jr, and S.W. Running. 1993. A daily soil temperature model based on air temperature and precipitation for continental applications. Clim. Res. 2:183-191. 10.3354/cr002183
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 53
  • No :4
  • Pages :458-470
  • Received Date : 2020-09-08
  • Revised Date : 2020-10-28
  • Accepted Date : 2020-11-06